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ABSTRACT OF THE DISSERTATION

Bridging cognition and neurobiology with large-scale cortical dynamics and multimodal
brain data

by

Richard Gao

Doctor of Philosophy in Cognitive Science

University of California San Diego, 2020

Professor Bradley Voytek, Chair

Human cognition depends on complex and coordinated activity of neural populations,

which are enabled by a rich diversity in cellular and network properties across the brain. To

study the neural basis of cognition, cognitive neuroscience combines the analysis of large-

scale electrophysiological signals—neural field potentials with contributions from millions of

neurons—with behavioral tasks to observe brain dynamics during cognitive processes, such as

attention, decision-making, and language understanding. This approach has been successful in

discovering neural correlates of cognition, which can differentiate between behavioral states

and tracking disease progression within and across individuals. However, we currently lack the
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ability to analyze the physiological contributions underlying these brain signals, especially in

humans, thus hindering advances towards a mechanistic understanding of how cognition is linked

to neurobiology, as well as how cognitive functions deteriorate with pathological changes in the

brain.

In this dissertation, I leverage multimodal brain data from humans, animals, and in-vitro

models, as well as novel simulation and analysis techniques to investigate the biological variables

underlying oscillatory and asynchronous neural dynamics, ultimately relating them to cognition.

Chapter 1 reports the emergence of complex oscillatory activity in human induced pluripotent

stem cell-derived brain organoids, a model for early neurodevelopment, and the co-evolution of

the cellular and synaptic properties that support it. Chapter 2 presents a computational model that

accounts for changes in the 1/f power law exponent of asynchronous (or scale-free) neural activity

as a shift in the balance between synaptic excitation and inhibition, which is validated on rodent

and non-human primate electrophysiological data. Chapter 3 develops a novel computational

technique to infer neuronal timescales across the human cortex, which follows a gradient along

the sensorimotor-to-association cortical hierarchy, is shaped by variations in inhibitory synaptic

and transmembrane ion channel proteins, and dynamically lengthens during working memory

maintenance and shortens over aging in the long term. Together, these works present a framework

for integrating open-source datasets and existing findings from cellular, systems, and cognitive

neuroscience to decipher large-scale human brain recordings, thus linking brain structure and

function with neural dynamics for mechanistic investigations of cognition and brain disorders.
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Chapter 0

Introduction

A case for the human model of cognition

Modern neuroscience has granted us the ability to conduct detailed investigations into the

neural basis of cognition in many model organisms, in an effort to understand the role the brain

plays in shaping our own thoughts and actions. Linking knowledge of biological mechanisms we

learned from animal brains to principles of human cognition, however, presents many challenges

that relate to the theoretical, technical, and ethical limitations surrounding the study of human

brains and behavior. Human cognition is complex, embodied, and situated in our environments

and cultures (Hutchins, 1995; Rosch et al., 1992), and so is the cognition of rodents, apes, dolphins,

and potentially robots endowed with artificial intelligence. They are not inherently better or worse

than one another, but different. “Rats are not small humans” is a common criticism towards the

use of rodent models in neuroscience, but it is not a pejorative—depending on which aspect of

cognition one is interested in, rats may in fact be superior than humans: spatial navigation guided

by odors in the dark subway tunnels of New York City is natural for a rodent, and walking above

ground and finding your way using Google Maps is natural for humans of today. We intuitively

understand that they are similar in some ways, but not in all ways: much of the differences arise

from the brains, sensorimotor capabilities, and environmental affordances we and our rodent
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friends are endowed with, and the key similarities (fortunately for neuroscientists) reside in the

fact that we can both get from point A to point B guided by our senses, memories, and goals, and

that we both have a hippocampus.

Indeed, the discoveries of place cells and grid cells in the hippocampal and entorhinal

system (Moser et al., 2008)—the neural mechanisms underlying rodent spatial navigation—were

awarded the Nobel prize recently. Rightfully so, for their insights into the so-called “cognitive

maps”, but not because we desperately want to solve how rats find their way into our homes, rather

that we believe cognitive maps are a part of the same principles underlying human navigation

through physical space, time, and even mental concepts (Behrens et al., 2018; Stachenfeld et al.,

2017). Because of our ability to invasively perturb and measure their brains and behaviors, animal

models are indispensable for the progress of cognitive neuroscience, where we can look at the

neural mechanisms underlying many animal behaviors that could represent a simplified version, a

precondition, or a subset of the computations performed for human cognition (Cisek, 2019).

Nevertheless, although animals exhibit complex behaviors that are fascinating independent

of how they could potentially model human cognition, chickens counting (Rugani et al., 2015) is

not exactly humans counting (Núñez, 2017), songbirds vocalizing is not exactly humans arguing

or singing opera (Hockett, 1960; Townsend et al., 2018; Engesser & Townsend, 2019), tool-use in

apes is not exactly humans offloading working memory demands onto our smartphones (Seed &

Byrne, 2010), and rats are not exactly small humans. Here, the differences are as interesting as

the similarities, which can be just as well said about human cognition across cultures (Barrett,

2020; Bender, 2019). And while these animal models shed light on how neural circuits could

implement parts of the analogous computations, they provide only preliminary clues to the neural

basis of human cognition, not the full solution (if that’s what one is interested in). Thus, these

clues give us a valuable starting point for where and how to probe the human brain for follow-up

investigations, but it is crucial to integrate the insights gained from animals, as well as in-vitro

and computational models of the brain, to understand how similar molecular, synaptic, cellular,

2



and network mechanisms support similar functions in the human brain, and where the similarities

eventually breakdown. However, to pursue an investigation of the biological basis of human

cognition, we are immediately faced with a difficult challenge: due to technical limitations and

ethical considerations, we cannot directly perturb and record from the human brain with the

resolution and level of control we desire—not now, and potentially not ever.

Cognitive neuroscience and neural correlates of cognition

One of the central questions in neuroscience asks how the human nervous system gives rise

to intelligent and adaptive behaviors, and how cognitive functions deteriorate in conjunction with

pathological changes in the brain. The field of cognitive neuroscience—combining neuroimaging,

cognitive science, psychology, and clinical neuroscience—has been at the forefront of this research

investigating complex human cognition. This is especially true in the last two decades, with the

advent of non-invasive high spatial and temporal resolution neuroimaging tools such as functional

magnetic resonance imaging (fMRI) and high-density magneto-/electroencephalogram (M/EEG),

and more recently, electrocorticography (ECoG) and local field potentials (LFP) from focal

invasive cortical recordings in patients undergoing neurosurgical monitoring. Aside from rare

clinical circumstances where limited recordings from single neurons are accessible, most human

brain signals come in the form of aggregate neural field potential (e.g., EEG, ECoG and LFP),

which do not directly reflect neuronal action potentials, but the complex interaction and integration

of ionic currents from millions of neurons across different neural circuits, and potentially over

different brain regions (Buzsáki et al., 2012) (or, in the case of fMRI, neurovascularly coupled

blood oxygenation). Nevertheless, combined with complex behavioral task paradigms, these

tools give us the ability to observe the human brain during various cognitive processes, such as

attention, working memory, decision-making, and language understanding—many of which are

uniquely human—over multiple timescales.

This line of research has produced a large repertoire of neural correlates (or biomarkers)

3



that reflect changes in behavior over the last few decades. However, these studies are often

phenomenological, treating the brain as a “computational blackbox”. That is, neural correlates of

cognition inform computational theories of the mind and consistently reflect changes in cognitive

state or disease progression both within and across people, but do not advance a mechanistic

understanding of the biological details that underlie neural population dynamics and computation.

An example of such a biomarker is rhythmic neural activity, or “neural oscillations”: 10 Hz

fluctuations in scalp EEG were first recorded using a simple voltmeter over a hundred years

ago (coined alpha oscillations). Since then, it has been found to correlate with a wide range of

cognitive and disease states, such as perceptual awareness, arousal, aging, and autism, to name

just a few. However, to this day, we still have an incomplete picture of how alpha oscillations are

generated in the human brain (Halgren et al., 2019), the precise cell-types, neuronal microcircuits,

and brain regions that are involved, and why it is so intimately linked to many aspects of cognition.

The lack of mechanistic understanding of alpha oscillations is not the exception, but

the norm for neural correlates in cognitive neuroscience. With more spatiotemporally resolved

electrical recordings, we have now observed many types of oscillations—beta, theta, gamma,

sleep spindles, etc.—that correlate with various behaviors. Furthermore, oscillations represent

only a subset of signal features that can be extracted from these meso- and macroscale electro-

physiological signals. Others range from simple measures like stimulus-locked signal deflections

(event-related potential, ERP (Kutas & Hillyard, 1980)), to complex and nonlinear measures

such as signal entropy and fractal exponent (Waschke et al., 2019). Finally, when taking into

consideration other signal modalities, such as functional connectivity measures in fMRI, it’s clear

that cognitive neuroscience now has an abundance of neural biomarkers that can predict task

performance and discriminate between cognitive states, especially when combined with modern

machine learning techniques. Although signal features (like neural oscillations) can motivate

theories for how large-scale network dynamics can support cognition (Fries, 2005; Voytek &

Knight, 2015; Breakspear, 2017), these analyses do not provide a mechanistic understanding
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of the link between cognition and the brain at a more detailed biological level, which would

greatly benefit targeted clinical interventions for neurological and psychiatric disorders, as well as

provide fundamental insight into the biological wetware that endows us with general intelligence

beyond what’s possible with artificial intelligence today.

Cognitive neuroscience does not by definition preclude mechanistic links to biological de-

tails. In fact, we are very interested in understanding, for example, "the circuit dynamics, network

architectures, neuronal biophysics, synaptic rules, and molecular pathways that make cognition

possible." Quoted is the mission statement of the Mechanistic Cognitive Neuroscience Unit at

HHMI Janelia Research campus in the U.S. While many such systems neuroscience research pro-

grams from different labs across the world share this goal, most of them share another similarity:

that these investigations are often conducted in model organisms with very different (and limited)

cognitive and behavioral repertoires, like C. elegans, drosophila, zebrafish, and rodents. Indeed,

while the unifying goal is clear, in practice, investigations of biological mechanisms and complex

cognition—especially human cognition—occur in largely disparate fields. Cellular and systems

neuroscience depend on the tools of proteomics, synaptic imaging, intracellular recordings, and

genetic manipulations to precisely characterize the biological machineries that shape the diversity

of form and function of cells in small networks, while cognitive neuroscience uses macroscale

imaging modalities to probe neural correlates of complex cognition, with little overlap in between.

This is due in large part to the technical and ethical limitations surrounding invasively recording

large populations of single neurons, as well as their dendritic and molecular processes from

the human brain. Therefore, a persisting challenge remains for neuroscience: can we integrate

our detailed knowledge of smaller scale biological systems to understand how heterogeneous

components across spatial scales—ion channels, synapses, neurons, circuits—mechanistically

combine to shape neural dynamics, and in turn give rise to complex computation and cognition in

humans?

5



Bridging biology and cognition with large-scale neural dynamics

In this dissertation, I propose that meso- and macroscale brain dynamics can be used to link

neurobiology with human cognition. On one side, a large body of work from computational and

systems neuroscience is dissecting the physiological mechanisms that enable neural population

dynamics in animal models, typically measured in the form of spiking activity from many isolated

single neurons, but in some cases, local field potentials as well. On the other side, we have an

ever-increasing repertoire of EEG, ECoG, and LFP signal features—both manually engineered

and machine-learned—that correlate with aspects of human behavior, cognition, and disease,

but for which we do not understand the physiological mechanisms. Therefore, one productive

line of research is to hone in on a narrower gap: drawing on data and findings from cellular,

systems, and cognitive neuroscience and integrating them using computational simulation and

analysis frameworks, we can combine the ingredients on the two ends of this spectrum to decipher

large-scale neural signals in terms of their underlying biological processes. In other words, if

we can make even partial inferences on smaller scale variables, such as spike train statistics or

synaptic weights, using signals accessible from the human brain, it would enable a broad range of

mechanistic investigations into human cognition and brain disorders.

This dissertation is by no means the first attempt at such a research program, and it is made

possible by building on advances across many subfields of neuroscience. For example, earlier

works in cognitive neurodynamics explicitly attempt to explain large-scale brain signals detectable

in humans in terms of their biological mechanisms, while arguing that those signals may be

at a more relevant scale than single-neuron spiking when considering the neural computations

required for complex behavior (Freeman, 2000; Varela et al., 2001). More recent works have

similarly recognized the utility of meso- and macroscale brain signals, such as LFP and ECoG, as

a way to decode neural population activity, as well as biophysical contributions from synaptic

and other transmembrane currents (Buzsáki et al., 2012; Einevoll et al., 2013; Panzeri et al., 2015;

Pesaran et al., 2018; Sherman et al., 2016). There is also a long history of experimental (Buzsáki
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& Draguhn, 2004; Buzsáki & Freeman, 2015) and computational research (Brunel & Wang,

2003; Kopell et al., 2000; Wang, 2010) specifically on neural oscillations in the animal literature,

which have inspired analogous investigations in non-human primates and humans, such as gamma

oscillations in sensory cortices (Bartoli et al., 2019; Hermes et al., 2015; Ray et al., 2008; Ray

& Maunsell, 2011), as well as theta oscillations as they relate to the aforementioned place cells

in the hippocampus (Buzsáki, 2002; Maidenbaum et al., 2018). Recent works investigating the

non-rhythmic (or aperiodic, scale-free (He et al., 2010)) components of neural field potentials

have also enabled novel opportunities for linking human cognition with lower-level physiology,

such as the relationship between high-frequency (high-gamma, or broadband) activity with local

neural population firing rate (Crone et al., 1998; Manning et al., 2009; Mukamel et al., 2005).

Finally, it must be mentioned that computational frameworks that build models of neural circuits

using empirical findings from animals are integral for making the link across levels (Einevoll

et al., 2019), since the simulated model output can then be compared with real brain data from

humans for inference of variables that are otherwise inaccessible, such as macroconnectivity

structure (Kiebel et al., 2008) and more fine-grained cellular and synaptic properties (Gonçalves

et al., 2020).

The above references represent an overview, and only a small subset of the works that

this dissertation is directly built upon or is otherwise inspired by (more relevant references are

found within the Chapters). The current work can be viewed as following the same philosophy

while using more modern simulation and analysis frameworks (Cole et al., 2019; Donoghue et al.,

2020), in conjunction with rich multimodal brain data, such as gene expression, brain imaging,

and human electrophysiological data that were made possible owing to efforts from multi-site

consortia and open-source collaborations (Frauscher et al., 2018; Hawrylycz et al., 2012; Jacobs

& Kahana, 2010; Van Essen et al., 2013; Voytek, 2016, 2017).
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Outline of dissertation

The dissertation is organized as follows: Chapter 1 uses a novel model of early neurode-

velopment—human induced pluripotent stem cell-derived brain organoids—to investigate the

origin of cortical oscillations, then compare those oscillations to features derived from prema-

ture infant EEG (Trujillo et al., 2019). Chapter 2 combines computational simulation and data

from rodents and non-human primates to infer the ratio of local excitation and inhibition—two

fundamental and balancing forces in the brain—from power law properties of LFP and ECoG

power spectral density (Gao et al., 2017). Finally, Chapter 3 develops a novel method to infer

neuronal timescales, a quantity that characterizes the ability to track rapidly changing sensory

cues vs. slowly accumulating contextual information, and dissect the contributions from synaptic,

cellular, and network properties across the cortex that shape these timescales, as well as how they

change in behavior and aging (Gao et al., 2020).
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Chapter 1

Nested oscillatory dynamics in cortical

organoids model early human brain

network development

Abstract

Structural and transcriptional changes during early brain maturation follow fixed develop-

mental programs defined by genetics. However, whether this is true for functional network activity

remains unknown, primarily due to experimental inaccessibility of the initial stages of the living

human brain. Here, we developed human cortical organoids that dynamically change cellular pop-

ulations during maturation, and exhibited consistent increases in electrical activity over the span

of several months. The spontaneous network formation displayed periodic and regular oscillatory

events that were dependent on glutamatergic and GABAergic signaling. The oscillatory activ-

ity transitioned to more spatiotemporally irregular patterns, while synchronous network events

resembled features similar to those observed in preterm human electroencephalography. These

results show that the development of structured network activity in a human neocortex model
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may follow stable genetic programming. Our approach provides opportunities for investigating

and manipulating the role of network activity in the developing human cortex.

1.1 Introduction

Diverse and hierarchical cellular networks develop into circuits with patterns of functional

spatiotemporal activity to form the human brain. Neural oscillations, a prominent, rhythmic brain

signal found across species, robustly track behavioral and disease states, and have long been

leveraged in systems neuroscience due to their ubiquity and accessibility (Buzsáki & Draguhn,

2004; De Hemptinne et al., 2015; Fries, 2005; Henriques & Davidson, 1991; Khan et al., 2013;

Uhlhaas & Singer, 2010). These complex network dynamics emerge early in development, and

is unclear if shaped exclusively by biological programming prenatally (Blankenship & Feller,

2010; Johnson, 2001; Power et al., 2010). In vitro and in vivo rodent studies have shown that a

conserved repertoire of organized network activity, such as traveling waves, giant depolarizing

potentials, and early network oscillations, develops according to a consistent timeline prior to and

immediately after birth (Allene et al., 2008; Khazipov & Luhmann, 2006; Uhlhaas et al., 2010).

However, due to an inability to interrogate the electrophysiology of intact embryonic brains, it

remains unknown whether the same happens in humans. As a result, our knowledge about human

brain functional development rests upon observations from nonhuman model systems.

Organoids generated from induced pluripotent stem cells (iPSC) have emerged as a scaled-

down and three-dimensional model of the human brain, mimicking various developmental features

at the cellular and molecular levels (Camp et al., 2015; Cederquist et al., 2019; Giandomenico

et al., 2019; Lancaster & Knoblich, 2014; Lancaster et al., 2013; Luo et al., 2016; Mariani et al.,

2012; Paşca et al., 2015; Qian et al., 2016; Renner et al., 2017; van de Leemput et al., 2014; Xiang

et al., 2017, 2019). Despite recent advances in the understanding of their cellular diversity, there

is no evidence that these organoids develop complex and functional neural network activity that
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resembles early human brain formation (Birey et al., 2017; Giandomenico et al., 2019; Quadrato

et al., 2017). Therefore, researchers have not yet clearly determined whether brain organoids are

a suitable model for neural network dynamics (Kelava & Lancaster, 2016; Paşca, 2018).

Here, we use human iPSCs to generate cortical organoids that exhibit evolving cellu-

lar transcriptional profile and nested oscillatory network dynamics over the span of several

months. We subsequently investigated the molecular basis of human oscillatory activity forma-

tion, maintenance, and temporal control. Finally, we applied supervised machine learning with

cross-validation to evaluate the similarity between electrophysiological network activity patterns

of the in vitro model and human preterm neonatal electroencephalogram (EEG). Our findings

suggest that organoid models are suitable for the investigation of the physiological basis of

network formation at early and late stages of the human brain development. This prolonged eval-

uation of cortical organoid activity expands our understanding of the emergence of network-level

neurodynamics in humans.

1.2 Results

Generation of functional cortical organoids

Despite the structural and transcriptional similarities between brain organoids and the

developing nervous system, the emergence of higher-level complex network activity comparable

to the living human brain remains largely untested (Figure 1.1A). To investigate the formation

of a functional network, we promoted cortical specification by previously described protocols

(Paşca et al., 2015; Thomas et al., 2017; Yoon et al., 2019) (Figure 1.1B, see Methods for details).

At the beginning of differentiation, an abundance of proliferative neural progenitor cells (NPCs)

(expressing Ki67, SOX2 and Nestin) that self-organized into a polarized neuroepithelium-like

structure was observed. Similar to human cortical development in vivo, the proliferative zone

around a lumen delimited by β-catenin+ cells was surrounded by progenitor cells. Progressively,
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the organoids increased in size and in the proportion of mature neurons (expressing NeuN

and MAP2) to ultimately develop into concentric multilayer structures composed of NPCs,

intermediate progenitors (TBR2, also known as EOMES), and lower (CTIP2, also known as

BCL11B) and upper (SATB2) cortical layer neurons (Figure 1.1C-E and 1.5). The neurons

exhibit dendritic protrusions and synaptic ultrastructure (Figure 1.1F and 1.1G). After 6 months,

inhibitory neurons can also be observed (calretinin CR, also known as CALB2; GABAB; NKX2.1,

also known as TTF1; GABA; LHX6; somatostatin SST and parvalbumin PV) (Figure 1.1D and

1.5). Although the initial fraction of GFAP-positive cells was less than 5%, this population

increased to about 30-40% after 6 months of differentiation (Figure 1.1D and 1.1E).

To characterize the cellular diversity of cortical organoids during development, we per-

formed single-cell RNA-seq on 1-, 3-, 6-, and 10-month organoids (Figure 1.1H-M, Figure 1.5

and Table 1.1). We used unsupervised clustering on the combined dataset of 15,990 cells to

identify clusters and their relative abundance at distinct time points. Based on the expression gene

markers, we combined smaller subclusters into five major cell classes: progenitors, intermediate

progenitors, glial cells, glutamatergic neurons and GABAergic neurons. Based on this annotation,

1-month organoids consisted of > 70% progenitor cells (expressing SOX2 and PAX6) (Figure

1.1J and 1.1M). At the 3- and 6-month stage, cortical organoids comprised mainly glia (SLC1A3)

and glutamatergic neurons (GRIA2 and SNAP25) (Figure 1.1J and 1.1M). The glial cells started

with a small population, and increased to around 40% of cells present in the cortical organoids.

Remaining populations of progenitors (around 5%) and intermediate progenitors (around 10%)

were present throughout the maturation. A fraction of glutamatergic neurons at the 3- and 6-month

time point expressed subunits of GABAergic receptors such as GABRB3 (Figure 1.5C). This

expression of GABAergic receptors predates the appearance of interneurons.
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Figure 1.1: Cellular and molecular development of human cortical organoids. (A) Overview
of human neural network formation and dynamics evaluation using cortical organoids. (B)
Schematic of the protocol used to generate cortical organoids. Scale bar, 200 µm. (C) Organoid
growth during different developmental stages. (D) Representative immunostainings showing
proliferating NPCs (Ki67 and Nestin), lower (TBR1 and CTIP2) and upper (SATB2) cortical
layer neurons, glial cells (GFAP) and GABAergic (CR) neurons overtime. Scale bar, 50 µm. (E)
Population analysis of specific markers indicating stages of maturation and multiple neuronal
subtypes. The data are shown as mean ± s.e.m. (n = 8). (F) Representative image of a pyramidal
neuron; dendritic structures are observed in cells transduced with the SYN:EGFP reporter (scale
bar, 5 µm). (G) Electron microscopy of synaptic ultrastructure in 4-month cortical organoids
(blue). Scale bar, 200 nm. (H) Uniform manifold approximation and projection (UMAP) plot
of 15,990 cells from integrating datasets on 1-, 3-, 6-, and 10-month cortical organoids. Colors
denote cells sampled from four different time points. (I) UMAP plot of the integrated datasets
colored by seven main cell clusters. Red as GABAergic neurons, orange as glutamatergic neurons,
blue as glia cells, green as intermediate progenitors, purple as progenitors, green blue as mitotic
cells, and grey as others. (J) Separate UMAP plots of integrated data by different time points.
Same color scheme used for main cell clusters. (K) Dot plots showing cluster specific gene
expression across main cell clusters. (L) UMAP plots showing expression levels of cell-type
specific markers (see Figure 1.5 for additional markers). (M) Barplots of proportion of cell types
at individual time points.
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GABAergic neurons were mainly restricted to 6- to 10-month organoids as indicated by

expression of GAD2 (also known as GAD65), DLX1 and DLX5 (Figure 1.1J-M, Figure 1.5C

and D), reaching around 15% of the total neuronal population after 10 months of maturation,

consistent with its presence later in the in vivo development (Uylings et al., 2002). The molecular

profile of GABAergic neurons was further evaluated by single-cell transcriptomics (Figure 1.5E)

and by the presence of protein markers (Figure 1.5F). To further demonstrate the biosynthesis

of GABA during the maturation process, we employed metabolomics liquid chromatography

coupled to mass spectrometry (Gertsman et al., 2014). The neurotransmitter GABA was detected

in the culture media of cortical organoids after 6 months of maturation (Figure 1.5G), in a

physiological relevant concentration (Van Hove & Thomas, 2014). These results suggest the

presence of the basic components for the generation of a neural network in a developing human

cortical in vitro model.

Emergence of nested oscillatory network activity

In addition to the observed cellular diversity and expression of synaptic markers, we

interrogated the presence of functional network activity. Starting at a single cellular level, we

used whole-cell patch-clamp recording from 6-month cortical organoids (Figure 1.6 A-E). The

action potential firing activity and the voltage-dependent Na+ current were tetrodotoxin (TTX)

sensitive. Application of glutamate receptor antagonists (NBQX and AP5) fully inhibited the

spontaneous excitatory postsynaptic currents recorded at -60 mV, confirming the presence of

functional excitatory neurons.
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Figure 1.2: Oscillatory network dynamics in long-term cortical organoids. (A) Schematic of the
organoid signal processing pipeline. Raw MEA data is analyzed as population spiking and LFP
separately. Synchronous network events are highlighted in yellow. (B) Raster plot of network
spiking activity after 1.5 and 6 months of maturation. A 3-s interval of activity over 5 channels
is shown in the upper right corners. (C) Cortical organoids show elevated and continuously
increasing mean firing rate compared to 2D monolayer neurons (n = 8 for organoid cultures, and
n = 12 for 2D neurons). Inset, correlation of the firing rate vector over 12 weeks of differentiation
(from 8 to 20) between pairs of cultures showing reduced variability among organoid replicates.
(D) Temporal evolution of cortical organoid network activity. Detailed definitions and further
parameters are presented in Figure 1.6. (E) Time series of population spiking and LFP during
network events in cortical organoid development. Each overlaid trace represents a single event
during the same recording session. The number of subpeaks during an event (F) is maximized
and stereotypical at 6-months, developing nonlinearly and following an inverted-U trajectory. (G)
Network variability, measured as the coefficient of variation of the inter-event interval, increases
monotonically throughout development. (H) 1-4 Hz oscillatory power in the LFP increases up
to the 25th week in culture and plateaus at 30 weeks. Inset, oscillatory power is calculated by
fitting a straight line (dashed) over the aperiodic portion of the PSD and taken as the height of
narrow peaks rising above the linear fit. (I) Pairwise correlation of LFP across all electrodes
(coherence) within a well during network events initially increase, then decreases after 30 weeks.
(J) An example of sequential frames during a network event show the spatial propagation of
wave spreading, then disappearing again after 100ms. The data shown in C, D, F, G, H, and I are
presented as mean ± s.e.m. *P < 0.05, **P < 0.01, ***P < 0.001, unpaired Student’s t-test (C),
quadratic (F, H and I) and linear (G) regression.
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To further evaluate the cortical organoid functionality in a mesoscopic level, we performed

weekly extracellular recordings of spontaneous electrical activity using multi-electrode arrays

(MEA). Cortical organoids were plated per well in 8 wells of a MEA plate containing 64 low-

impedance (0.04 MΩ) platinum microelectrodes with 30 µm of diameter spaced by 200 µm,

yielding a total of 512 channels. We separately analyzed single-channel and population firing

characteristics derived from channel-wise spike times and the local field potential (LFP), a

measure of aggregate synaptic currents and other slow ionic exchanges (Buzsáki et al., 2012)

(Figure 1.2A). The spikes, also refer here as events, were defined by the event unit waveforms

standard structure with typical refractory periods and by pharmacological intervention. These

spikes or events from each channel do not represent putative single-unit action potentials, but

represent multi-unit activity (MUA). Since both the spatial and temporal resolution of MEA

sampling is sparse, single-unit spike trains were not isolated, instead submitting channel-wise and

whole-well activity for further analysis, rather than individual event trains. Over the course of 10

months, cortical organoids exhibited consistent increases in electrical activity, as parametrized

by channel-wise firing rate, burst frequency, and synchrony (Figure 1.2B-D and Figure 1.6F-I),

which indicates a continually-evolving neural network. Additionally, the variability between

replicates over 40 weeks of differentiation was significantly lower compared to iPSC-derived

neurons in monolayer cultures (Figure 1.2C inset and Figure 1.6J).

During individual recordings, cultures displayed a robust pattern of activity, switching

between long periods of quiescence and short bursts of spontaneous network-synchronized spiking

(hereafter referred to as “network events”). These network events were periodic ( 0.05 Hz) but

infrequent early in development ( 2 months), occurring roughly every 20 seconds and decayed

monotonically after the initial onset (Figure 1.2E). From 4-months onwards, a secondary peak

emerged 300-500 ms after the initial network activation, leading to the presence of a nested

faster oscillatory (2-3 Hz) pattern up to 6-months in culture (Figure 1.2F and Figure 1.7A-F).

Notably, this robust fast timescale nested oscillation was not observed in 3D neurospheres,
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suggesting that the spherical arrangement of neurons is insufficient for the emergence of nested

oscillations (Figure 1.7G-J). The regular oscillatory activity during network events transitioned

to stronger, yet more variable, oscillations over time. To quantify this network complexity,

we tracked the regularity (coefficient of variation of inter-event intervals, CV) and the spatial

and temporal correlation between spontaneous network events. The inter-event interval CV

consistently increased over 10 months of differentiation (Figure 1.2G), from extremely regular

latencies (CV ≈ 0) at 2 months to irregular, Poisson-like (CV ≈ 1) at 10 months. This indicates

increased variability between consecutive network events initiation. Additionally, spatial and

temporal irregularity on a shorter time-scale (within-event) also increased with development,

suggesting a breakdown of deterministic population dynamics from the onset of network events.

Periodic oscillatory activity is often defined as a “bump” over the characteristic 1/f

background in the power spectral density (PSD) of extracellular signals above-and-beyond the

aperiodic 1/f signal (Buzsáki et al., 2013; Gao et al., 2017). In organoid LFPs, we observed

both prominent oscillatory peaks in the low-frequency range (1-4 Hz) and in the aperiodic signal

characteristic of neural recordings (Ben-Ari, 2001; Voytek et al., 2015). The development of

oscillatory activity in cortical organoids over time was quantified by computing the PSD for each

LFP recording (Figure 1.2H, inset). Oscillatory power in the delta range (1-4 Hz) increased for

up to 24 weeks in culture, tapering off slightly in subsequent recordings and plateauing during the

last 10 weeks. This inverted-U trajectory reflects the network’s initial acquisition of oscillatory

modes at steady frequencies and the dispersion of this regularity at later time points. The LFP

results reveal the development of the cortical organoid cultures across different network states:

from sparse activity with extreme rigidity and regularity, to one that acquires repetitive and

regular oscillatory patterns (Voytek & Knight, 2015), until it finally reaches a stage of higher

spatiotemporal complexity and variability that is reminiscent of self-organized networks (Tetzlaff

et al., 2010) (Figure 1.2I,J and Figure 1.7C-F).
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Oscillatory coordination of neural ensembles and its synaptic mechanisms

Oscillatory dynamics have been postulated to coordinate spiking across neural ensembles.

In the LFP and other mesoscopic brain signals, this manifests as a phenomenon known as cross-

frequency phase-amplitude coupling (PAC) (Voytek & Knight, 2015), wherein the high-frequency

content of the LFP is entrained to the phase of slow oscillations (Manning et al., 2009; Miller

et al., 2007; Mukamel et al., 2005). In the cortical organoids, we observed greater PAC between

oscillatory delta (1-4 Hz) and broadband gamma activity (100-400 Hz, see Methods) during

network events compared to quiescent periods (Figure 1.3A-C). This broadband gamma is non-

oscillatory, but has been shown to be an LFP surrogate of population spiking (Manning et al.,

2009; Miller et al., 2007).

We further evaluated the role of glutamatergic and GABAergic synaptic transmission in

forming oscillations by pharmacological intervention. Organoid neural networks were susceptible

to both glutamate receptor antagonists (AP5 and CNQX; NMDA and AMPA/kainate, respectively)

and GABA receptor agonists (muscimol, GABAA; baclofen, GABAB) by significantly reducing

the number of spikes events and bursts, with a subsequent extinction of synchronous activity. The

electrical activity was abolished in the presence of TTX (Figure 1.3D and 1.3E). Blockade of

GABAergic transmission by bicuculline increased the number of network-synchronized events

and did not affect peak population firing rates, but abolished nested 2 Hz oscillatory activity by

erasing subsequent reverberant peaks (Figure 1.3F).
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Figure 1.3: Cortical organoid serves as a model of functional oscillations and their synaptic
mechanisms. (A-C) Phase-amplitude coupling is observed in organoid LFP during network
events. (A) Example of raw LFP during a network event decomposed into its low-frequency
component (1-4 Hz delta) and the amplitude envelope of the high-frequency, broadband gamma
component (200-400 Hz). Analysis was repeated for 100-200 Hz with near identical effect size
and significance. (B) Normalized gamma amplitude binned by delta phase during network events
(black) shows greater modulation depth by low frequency delta than during non-event periods
(red). (C) Phase-amplitude coupling during network events is significantly greater than non-event
periods in all batches. (D) Effect of selective drug treatments on neuronal electrical activity in
6-month organoids. Representative raster plots and burst measurements of untreated and treated
organoids. The pharmacological manipulation was performed using cortical organoid plated on 4
MEA wells (n = 4, cortical organoid culture for each treatment). Scale bar, 20 s. Exposure to AP5
+ CNQX, baclofen and muscimol reversibly extinguish the network bursts (synchrony), while no
changes were promoted by bicuculline. (E-F) Pharmacological perturbation of oscillatory activity
during network events in 6-month organoids. Pre and post refer to before treatment administration
and after administration, respectively. Application of bicuculline and picrotoxin increases the
number of network events, while CNQX + AP5 and baclofen completely abolish synchronized
network events. Bicuculline blocks oscillatory network activity but not the network event itself.
Data are shown as mean ± s.e.m.; unpaired Student’s t-test.
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Cortical organoid network development resembles some preterm EEG fea-

tures

Despite emergence of complex oscillatory network activity in organoids, it is unclear

whether the spontaneous developmental trajectory observed is representative of programmed

early neurodevelopment. While network activity from cortical organoids does not exhibit the

full temporal complexity seen in adults, the pattern of alternating periods of quiescence and

network-synchronized events resembles electrophysiological signatures present in preterm human

infant EEG. During trace discontinu (Tolonen et al., 2007), quiescent periods are punctuated

by high-amplitude oscillations (spontaneous activity transients, SATs) lasting a few seconds.

Intervals of complete quiescence disappear as infants become of term, and the EEG is dominated

by continuous and low-amplitude desynchronized activity in adult brains (Figure 1.4A, Figure

1.8A and B).

Due of the inability to interrogate the electrophysiology of intact human embryonic brains,

we attempted to quantitatively compare network activity in cortical organoids to preterm human

EEG. We analyzed a publicly available dataset of 101 serial EEG recordings from 39 preterm

infants ranging from 24 to 38 weeks post-menstrual age (PMA); 567 data points total (Stevenson

et al., 2017). The dataset contains 23 precomputed features for each EEG record, ranging from

timing, rate, and variability of SATs (or bursts), as well as spectral power in canonical oscillatory

bands (delta, theta, etc., see Table 1.2 for full list of features). We computed analogous features

from each organoid LFP recording when appropriate. It is important to note that the biophysics of

scalp EEG is drastically different from extracellular field potential in the organoid, due to factors

such as spatial filtering by the scalp and orientation of neuronal populations in relation to the

recording electrode. Therefore, we selected a subset of 12 features to compare in the organoid

LFP (highlighted in Table 1.2), the majority of those correspond to duration and timing of SATs.

While features like EEG standard deviation (or root mean square, RMS) and interhemispheric
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synchrony are likely altered by skull thickening during early development, the large amplitude

network synchronous events are reliably detected in both EEG and LFP. Timing features derived

from SAT times (duration, inter-SAT interval, etc.) were compared between cortical organoid and

preterm neonates.

By comparing specific timing features between cortical organoids and preterm infants,

we found a range of correlations in the developmental trajectory of features with age, as well

as similarities in development between the two datasets (Figure 1.4B and C). For instance,

“SATs per hour” (“events per hour” in organoids, Figure 1.4B) and 95-percentile of inter-SAT

duration distribution showed high similarity both in absolute value and their developmental

trajectory (correlation with age), while “root-mean-square SAT duration” and median (50%)

SAT duration show different trends and absolute value, from 25 to 38 weeks in both datasets

(all features presented in Figure 1.8C and D). To compare the similarity of developmental

trajectory quantitatively, we computed the average resampled correlation between each feature

and developmental time in both datasets (Figure 1.4C and Figure 1.8D, see Methods for details).

These results summarize what is shown in Figure 1.4B: SATs per hour consistently increase

during development in both organoids and preterm infants, while the variability of SAT duration

(TSAT RMS) consistently decrease. Other features show inconsistent developmental trajectories

over time between organoid LFPs and preterm EEGs.
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Figure 1.4: Cortical organoid network dynamics mimic premature neonates after 28 weeks
of maturation. (A) Representative LFP trace from cortical organoid, highlighting instances of
network events (yellow). Comparable events between periods of quiescence (discontinuous
network dynamics) are shown in human preterm neonate EEG at 35 weeks gestational age, while
a different pattern of continuous activity is observed in adult EEG. SAT: spontaneous activity
transient. (B) Examples of analogous features in preterm neonate EEG and organoid LFP show
various levels of similarity throughout development. RMS: root mean square; 50%/95% refer to
50th and 95th percentile of feature distribution within a recording. (C) Pearson’s correlation coef-
ficients between age and electrophysiological features (mean ± std of bootstrapped distribution)
for both organoid and premature neonates show different degrees of developmental similarity for
individual features (12 total selected). For example, SATs (events) per hour shows remarkable
similarity over time between organoid and neonates. (D) Schematic of machine learning proce-
dure for age prediction: EEG features from 39 premature neonates (n = 567 recordings) between
25- and 38-weeks PMA (post-menstrual age) were used to train and cross-validate a regularized
regression model (ElasticNet), optimizing for preterm neonate age prediction based on their EEG
features only (top). The model was clamped after training, and applied directly on organoid
LFP features and control datasets, including held-out preterm neonate data, mouse primary
culture, 2D iPSC culture, and human fetal brain culture. (E) Model-predicted developmental time
(y-axis, age in weeks) follows actual weeks-in-culture (x-axis) for organoids (orange and blue),
as well as true age of held-out preterm neonate data points (black). Dashed line represents unity,
signifying perfect prediction. Large circles on solid lines and shaded regions denote mean ± std
of prediction, respectively, while dots indicate per-sample prediction (n = 8 for organoids at all
time points). (F) Pearson’s correlation coefficient between predicted and actual developmental
time for organoid, and control datasets. Significant positive correlations indicate the model’s
ability to capture developmental trajectory in a particular dataset.
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Taking in consideration the wide range of similarities observed across the two datasets,

we asked which features’ developmental trajectory were most informative of the developmental

time, and whether those were conserved between organoids and preterm infants. To accomplish

this in an objective fashion, we trained a regularized regression model with cross-validation

(ElasticNet, L1 and L2 regularized), to predict preterm infant age from their EEG features. In

other words, the regression model was only optimized to predict preterm infant age based on

their EEG, and was blind to the organoid data. Following training and hyperparameter selection,

the regression model was “locked” while we directly applied it on the organoid LFP dataset and

various control datasets to obtain their predicted developmental time (Figure 1.4D). Although

the regression model predicted organoid developmental time poorly before 25 weeks (Figure

1.4E, orange), and with high variability, mean predicted developmental time followed true age

with much higher fidelity after 25 weeks (blue). A subset of the preterm EEG data held out

during training was used to further validate the performance of the model (black), in addition

to other control datasets, including mouse primary culture, iPSC monolayer culture, and human

fetal brain culture (Figure 1.8E, details in Methods). To quantify how well developmental

trend over time was captured by the regression model, we compute the Pearson correlation

coefficient between the model-predicted age and the true age of the various datasets. Note that a

significant positive correlation was only observed for organoid and held-out EEG datasets (Figure

1.4F). While the developmental trajectory of cortical organoids is not identical to, and more

variable than, that of the fetal human brain, the two populations share similarities in how their

network electrophysiological properties change over time, suggesting genetically programmed

developmental timelines that can be detected by a simple machine learning algorithm.
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1.3 Discussion

While brain organoids have been shown to mimic early human neurodevelopment at the

cellular and molecular levels, evidence of network activity maturation and the corresponding

cellular basis have not been previously explored. Here, we report the formation of small-scale

functional electrophysiological networks in human cortical organoids while tracking their gene

expression profile and cellular composition over time. Single cell RNA-seq at multiple time

points spanning 10 months show development of various cellular subclusters, transitioning from

progenitor cells to neuronal and glial populations. Cortical organoids begin to exhibit highly

synchronous and stereotypical network activity (events) at 2 months, which transition into 2-3

Hz rhythmic activity by 4 to 6 months. Subsequently, network activity becomes more variable

spatiotemporally, coinciding with the development of inhibitory populations. Oscillatory activity

at 6 months exhibits cross-frequency coupling, a potential signature of functional neuronal

network communication; pharmacological intervention demonstrates the causal involvement of

glutamate and GABA in generating and sustaining oscillations. Finally, we observe similarities

in the developmental trajectory of some electrophysiological features between organoids and

human preterm infants, where a machine learning model trained to predict neonatal age from

their EEG features can predict organoid developmental timeline. Taken altogether, these results

demonstrate the utility of human stem cell-derived brain organoids as a viable neuroscience

research model, not only for the shifting landscape of molecular and cellular composition, but

also for the maturation of functional activity in brain networks during early neurodevelopment.

Diversity of excitatory and inhibitory populations

We used longitudinal single-cell transcriptional profiling followed by immunostaining and

functional validation to demonstrate the cellular dynamics of cortical organoids during long-term

development, revealing an unprecedented diversity of cell types. Notably, GABAergic neurons
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were mainly restricted to 6- to 10-month organoids, reaching around 10-15% of the total neuronal

population after 10 months, consistent with its presence later in the in vivo development (Uylings

et al., 2002). A metabolomic identification of GABA released in the culture media was further

used to validate the presence and functionality of the GABAergic system. While our aim was

not to investigate the origin of GABAergic neurons in the human neocortex, we cannot exclude

the possibility of aberrant cellular differentiation, warranting further dissection of the cortical

organoid model for novel neurodevelopmental pathways. The dynamic cell population and

the presence of neurotransmitter systems suggest the activity of the basic components for the

emergence of a neural network in a developing in vitro model.

Synchronous oscillations as a signature of functional network activity

The presence and changes of oscillations at fast timescales (>1 Hz) is a hallmark of the

in vivo brain, while coupling across different frequencies has been proposed to coordinate the

flow of information across regions (Buzsáki & Draguhn, 2004; Fries, 2005; Voytek et al., 2015).

With the cellular components for the generation of a functional neural network in place, we tested

if the cortical organoids display activity typically found in organized cortical networks. Robust

extracellular electrical activity was observed at earlier stages and progressively developed into an

organized oscillatory network. Cortical organoids initially exhibited periodic and highly regular

nested oscillatory network events that were dependent on glutamatergic and GABAergic signaling.

Our data suggest that GABA transmission is crucial for the maintenance, but not the initiation of

faster oscillatory activity. This is consistent with accounts of inhibition rhythmically coordinating

pyramidal populations’ activity during early development (Opitz et al., 2002). Additionally, during

periods of high network activity, the power of high-frequency (>100 Hz) activity is coupled to the

phase of the 3 Hz oscillation in the local field potential. Without positing its functional role, this

observation suggests that more complex oscillatory activity can indeed manifest and be studied in

this in vitro system.
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It is also unclear the biological basis of the increased variability in the number of sponta-

neous events in organoid cultures, especially after 28 weeks in culture. We believe that different

factors could increasingly introduce variability or diversity into the neural population during

maturation. In this context, since we started with single cells that aggregate to form organoids,

small population differences at early stages of organoid formation could lead to changes in activity.

Differences in the organoid positioning on the MEA and manipulation could also affect the signal

acquisition. Additionally, we do not exclude the possibility of the formation of independent

network profiles based on intrinsic activity and retro-feedback properties.

Comparing to the early developing brain: insights and limitations

Some features of early network dynamics in humans (e.g., spontaneous activity transients,

SATs) can be recapitulated by the in vitro model, with no additional constraints other than

structural and genetic similarities. The regularized regression model presented here was built

on preterm EEG data only, following an internal cross-validation procedure to estimate the

hyperparameters. It was then directly applied to organoid LFP data – previously unseen by

the classifier – to produce a “predicted developmental time”, in addition to data from several

other cellular models for validation. Simultaneous MEA and EEG seizure recordings, in human

subjects, share common features in the EEG frequency range (Schevon et al., 2012). However,

when comparing the in vitro MEA and neonatal EEG features, it is crucial to remove any

comparison of features affected by the spatial filtering properties of the skull. Moreover, there are

a few factors that might challenge the interpretation of the regression model results. First, it is

difficult to control external variation in infant EEG due to differences that may arise from the

EEG acquisition system and electrodes positioning. Second, clinical confounds due to potential

neurological condition and medications may also impact the dataset. Lastly, it is important to

highlight that the regression model cannot be extended to neurotypical adult, as adult EEGs do

not display the observed bursting patterns under normal conditions, thus the relevant features
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(e.g., SAT timing features) cannot be computed. Nonetheless, while we do not claim functional

equivalence between the organoids and a full cortex – neonatal or adult – the current results

represent the first step towards an in vitro model that captures some of the complex and oscillatory

spatiotemporal dynamics of the human brain.

Conclusion

Given the potential roles of synchronized and oscillatory network dynamics in coordi-

nating information flow between developed brain regions (Uhlhaas et al., 2010), these results

highlight the potential for cortical organoids to advance our understanding of functional elec-

trophysiology. Additionally, by applying spiking and LFP analysis that is traditional to animal

models, our findings offer a link between microscale organoid physiology and systems neuro-

science. Finally, considering the diversity and maturation of cell types generated, the robustness

of the neuronal networks, the presence of structural traits of mature neurons and the possibility of

using sensory experience to modulate neuronal activity collectively, cortical organoids may be

used to model cellular interactions and neural circuit dysfunctions related to neurodevelopmental

and neuropsychiatric pathologies. Importantly, this organoid model is small, approximately one

million times smaller than the human brain, but ethical implications cannot be ignored about the

future possibility of larger and more complex organoids (Farahany et al., 2018). Nevertheless,

our findings illuminate a link between microscale organoid physiology and systems neuroscience.

This offers a promising, small-scale experimental model of human neocortex to help address

neurodevelopmental pathologies that affect millions of people, but otherwise lack an existing

animal model.
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1.4 Methods

Lead contact and materials availability

This study did not generate new unique reagents. Further information and requests should

be addressed to and will be fulfilled by the Lead Contact, Alysson R. Muotri (muotri@ucsd.edu).

Experimental models

Human cell source. iPSC lines derived from control individuals have been previously

characterized elsewhere (Nageshappa et al., 2016; Tang et al., 2016). iPSC colonies were ex-

panded on Matrigel-coated dishes (BD Biosciences, San Jose, CA, USA) with mTeSR1 medium

(StemCell Technologies, Vancouver, Canada). The cells were routinely checked by karyotype

and CNV arrays to avoid genomic alterations in the culture. Embryonic samples were obtained

from fetus brains and cultured in Neurobasal (Life Technologies, Carlsbad, CA, USA) supple-

mented with GlutaMAX (Life Technologies), 1% Gem21 NeuroPlex (Gemini Bio-Products, West

Sacramento, CA, USA), 1% MEM nonessential amino acids (NEAA; Life Technologies), 1%

penicillin/streptomycin (PS; Life Technologies). The study was approved by the University of

California San Diego IRB/ESCRO committee (protocol 141223ZF).

Rodent cell source. Newborn mouse primary culture was performed as described else-

where (Moore et al., 2019). The cells were maintained in Neurobasal medium with GlutaMAX,

1% Gem21 NeuroPlex, 1% NEAA and 1% PS. The study was approved by the University of

California San Diego IACUC committee (protocol S09005).

Methods details

Generation of cortical organoids. Feeder-free iPSCs were fed daily with mTeSR1 for

7 days. Colonies were dissociated using Accutase (Life Technologies) in PBS (1:1) for 10
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minutes at 37 °C and centrifuged for 3 minutes at 150 x g. The cell pellet was resuspended

in mTeSR1 supplemented with 10 µM SB431542 (SB; Stemgent, Cambridge, MA, USA) and

1 µM Dorsomorphin (Dorso; R&D Systems, Minneapolis, MN, USA). Approximately 4 x

106 cells were transferred to one well of a 6-well plate and kept in suspension under rotation

(95 rpm) in the presence of 5 µM ROCK inhibitor (Y-27632; Calbiochem, Sigma-Aldrich,

St. Louis, MO, USA) for 24 hours to form free-floating spheres. After 3 days, mTeSR1 was

substituted by Media1 [Neurobasal (Life Technologies) supplemented with GlutaMAX, 1%

Gem21 NeuroPlex (Gemini Bio-Products), 1% N2 NeuroPlex (Gemini Bio-Products), 1% NEAA

(Life Technologies), 1% PS (Life Technologies), 10 µM SB and 1 µM Dorso] for 7 days. Then,

the cells were maintained in Media2 [Neurobasal with GlutaMAX, 1% Gem21 NeuroPlex, 1%

NEAA and 1% PS] supplemented with 20 ng/mL FGF2 (Life Technologies) for 7 days, followed

by 7 additional days in Media2 supplemented with 20 ng/mL of FGF2 and 20 ng/mL EGF

(PeproTech, Rocky Hill, NJ, USA). Next, cells were transferred to Media3 [Media2 supplemented

with 10 ng/mL of BDNF, 10 ng/mL of GDNF, 10 ng/mL of NT-3 (all from PeproTech), 200 µM

L-ascorbic acid and 1 mM dibutyryl-cAMP (Sigma-Aldrich) to promote maturation, gliogenesis

and activity]. After 7 days, cortical organoids were maintained in Media2 for as long as needed,

with media changes every 3-4 days.

Neurosphere generation. The neurosphere generation protocol was published elsewhere

(Nageshappa et al., 2016). Briefly, iPSC were dissociated using Accutase (Life Technologies),

centrifuged and resuspended in medium (IMDM medium, 15% fetal bovine serum, 2 mM L-

glutamine, 1% NEAA, 1 mM sodium pyruvate, 100 U PS, 200 µg/mL iron-saturated transferrin,

10 µM β-mercaptoethanol, 50 µg/mL ascorbic acid; supplemented with 10 µM SB (Stemgent)

and 1 µM Dorso (R&D Systems) on a “low-attachment” plate for embryoid body (EB) formation.

After 8 days, the EBs were plated for rosette formation and expansion of neural progenitors in

the presence of defined medium DMEM/F-12 supplemented with Gem21 NeuroPlex (Gemini

Bio-Products) and 20 ng/mL of FGF2. For neurosphere generation, 4,000 neural progenitors
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were seeded on “low-attachment” plate under rotation with no FGF2. The neurospheres were

developed for around 8 weeks prior MEA plating.

Mycoplasma testing. All cellular cultures were routinely tested for mycoplasma by PCR.

Media supernatants (with no antibiotics) were collected, centrifuged, and resuspended in saline

buffer. Ten microliters of each sample were used for a PCR with the following primers: Forward:

GGCGAATGGGTGAGTAAC; Reverse: CGGATAACGCTTGCGACCT. Only negative samples

were used in the study.

Immunofluorescence staining. Cortical organoids were fixed with 4% paraformaldehyde

overnight at 4 °C and then transferred to 30% sucrose. After the 3D structures sink, they were

embedded in O.C.T. (Sakura, Tokyo, Japan) and sliced in a cryostat (20 µm slices). Following air

dry, the slides containing the sliced samples were permeabilized/blocked with 0.1% triton X-100

and 3% FBS in PBS for 2 hours at room temperature, and incubated with primary antibodies

overnight at 4 °C. Primary antibodies used in this study were: mouse anti-Nestin, Abcam

(Cambridge, UK) ab22035, 1:250; rat anti-CTIP2, Abcam ab18465, 1:500; rabbit anti-SATB2,

Abcam ab34735, 1:200; chicken anti-MAP2, Abcam ab5392, 1:2000; rabbit anti-Synapsin1,

EMD-Millipore AB1543P, 1:500; mouse anti-NeuN, EMD-Millipore MAB377, 1:500; rabbit

anti-Ki67, Abcam ab15580, 1:1000; rabbit anti-SOX2, Cell Signaling Technology 2748, 1:500;

rabbit anti-GFAP, DAKO Z033429, 1:1000; rabbit anti-TBR1, Abcam ab31940, 1:500; rabbit

anti-TBR2, Abcam ab23345, 1:500; rabbit anti-beta-catenin, Abcam E247, 1:200; mouse anti-

GABA, Abcam ab86186, 1:200; mouse anti-GABA B Receptor 1, Abcam ab55051, 1:100;

mouse anti-Parvalbumin, Millipore MAB1572, 1:500; rabbit anti-Calretinin, Abcam ab92341,

1:200; rat anti-Somatostatin, Millipore MAB354, 1:100; rabbit anti-TTF1 (NKX2.1), Abcam

ab76013, 1:200. Next, the slices were washed with PBS and incubated with secondary antibodies

(Alexa Fluor 488-, 555- and 647-conjugated antibodies, Life Technologies, 1:1000) for 2 hours

at room temperature. The nuclei were stained using DAPI solution (1 µg/mL). The slides were

mounted using ProLong Gold antifade reagent and analyzed under a fluorescence microscope
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(Axio Observer Apotome, Zeiss).

Electron microscopy (EM). EM was performed at the CMM Electron Microscopy Fa-

cility at University of California San Diego. Four-month organoids were immersed in modified

Karnovsky’s fixative (2.5% glutaraldehyde and 2% paraformaldehyde in 0.15 M sodium cacody-

late buffer, pH 7.4) for at least 4 hours, post fixed in 1% osmium tetroxide in 0.15 M cacodylate

buffer for 1 hour and stained in 2% uranyl acetate for 1 hour. Samples were dehydrated in

ethanol, embedded in Durcupan epoxy resin (Sigma-Aldrich), sectioned at 50 to 60 nm on a

Leica Ultracut UCT (Leica, Bannockburn, IL), and transfer onto Formvar and carbon-coated

copper grids. Sections were stained with 2% uranyl acetate for 5 minutes and Sato’s lead stain

for 1 minute. Grids were analyzed using a JEOL 1200EX II (JEOL, Peabody, MA) transmission

electron microscope equipped with a Gatan digital camera (Gatan, Pleasanton, CA).

10X genomics single-cell and analysis. Cortical organoids were manually dissociated

and sorted for single-cell RNA-seq analysis on the same day. Dissociated cells were first placed

on ice, diluted in 2-5 ml of cell media and then treated with flavopiridol (5 µM, Sigma-Aldrich)

to arrest transcriptional activity. Cells were then stained with the DNA-dyes DAPI (300 nM,

Invitrogen) and DRAQ5 (2.5 µM, Thermo-Fischer) and incubated on ice for 10 minutes prior to

sorting. Cells were sorted using a SH800 sorter (Sony) into 50 µL of cell media using a gating

strategy that first isolated large, cell-sized particles and then sorted based on viability. Sorted

cells were pelleted (3 min, 100 x g, 4 °C) and resuspended in 40 µL of fresh cell media. Cell

concentration was determined and the minimum population viability threshold for downstream

single cell RNA-seq processing was set at 80%.

Single cell RNA-seq libraries were constructed using the Chromium Single Cell 3’ v2

Library kit (10x Genomics, (Zheng et al., 2017)) according to manufacturer descriptions; approxi-

mately 12,000 cells were loaded per sample. Reverse transcription and other amplification steps

were carried out on a T100 thermal cycler (Bio-Rad). After reverse transcription, GEMs (Gel

beads in emulsion) were lysed and cDNA was cleaned up with MyOne Silane Beads (Thermo
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Fisher Scientific). Single stranded cDNA was PCR-amplified for 12 cycles and purified using

SPRIselect Reagent Kit (Beckman Coulter). Next, cDNA was enzymatically fragmented followed

by double size selection with SPRIselect Reagent Kit (B23317, Beckman Coulter). Subsequently,

adaptors were ligated and libraries were constructed by PCR. Another round of double size

selection was performed using SPRIselect Reagent Kit to generate final libraries with a size of

200-700bp. Final libraries were quantified using Qubit dsDNA HS Assay Kit (Thermo Fisher

Scientific) and size distribution was measured using Tapestation (High Sensitivity D1000, Agi-

lent). Average fragment size of successful libraries was 500 bp. The libraries were loaded at a

concentration of 13 pM and sequenced on a Hiseq 4000 sequencer (Illumina) with the following

parameters (Read1 26 cycles; Index 1 8 cycles; Read 2 98 cycles).

Raw sequencing data from 1, 3, 6, 10-month organoids were preprocessed with Cell

Ranger software (version 2.1.1, 10X Genomics, Pleasanton). Reads were aligned to hg38 human

reference genome (Zerbino et al., 2018) and the feature-barcode matrix was generated. The

secondary analysis performed on the feature-barcode matrix was processed via the Seurat v2.0

package (Butler et al., 2018). For the analysis of individual time points, all genes that were

not detected in at least 5 cells and cells with less than 200 genes detected were discarded. The

additional filtering was based on gene-UMI distribution and percentage of mitochondrial reads.

The filtered matrix was log-normalized and scaled to 10,000 transcripts per cell. Variable genes

across the single cells were identified with the FindVariableGenes function and unwanted sources

of variation, such as UMI counts per cell, percent of mitochondrial reads, were regressed out

with the ScaleData function. Dimension reduction of the pre-processed matrix was performed

by principal component analysis (PCA). The number of principal components was identified

based on a strong enrichment of genes with low p-values, which were computed by a resampling

test. This procedure was implemented with the JackStraw function in Seurat. With the selected

dimensions, cellular distance matrix was first organized into a K-nearest neighbor (KNN) graph

and then partitioned into clusters with Louvain algorithm via the FindClusters function. Finally,
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cells within the graph-based clusters were co-localized on the UMAP plot (McInnes L, 2018) of

two dimensions by the RunUMAP function. Identifying top differentially expressed genes for

each cluster was performed using the FindAllMarkers function.

Datasets from the four time points were merged with the MergeSeurat function and

then the merged matrix was used as an input to the Seurat v3 anchoring procedure, which

assembles datasets into an integrated reference by identifying cell pairwise correspondences for

single cells across different datasets. Further analysis was processed with Seurat v3.0 package

(Stuart et al., ????). Default parameters including a dimensionality of 30 were set to run the

FindIntegrationAnchors and IntegrateData function. On the integrated datasets, clustering was

performed with a resolution parameter set to be 1.0 and a dimensionality of 30 by FindNeighbors

and FindClusters. With the graph-based clustering, a total of 14 clusters were generated, which

were further merged into seven main clusters based on expression of marker genes. UMAP plots

displayed by the DimPlot function were used to visualize and explore the integrated datasets.

Dot plots and UMAP plots for transcript abundance of marker genes were made using ggplot2

package (Wickham, 2016), while the barplot was created with graphics v3.5.3 package (Murrell,

2005). The dot plots show the percentage of cells that express more than one transcript for each

gene and its log-normalized expression level across main cell clusters. Violin plots for marker

gene expression across all clusters were produced with the VlnPlot function.

Mass spectrometry. Samples were assayed using an adaptation of published protocol

(Gertsman et al., 2014). Cortical organoid media (100 µL) was mixed with 2 µM 13C4-4-

aminobutyric acid, as internal standard. Metabolites were extracted using 80% ice-cold methanol.

After incubation for 30 min at -20 °C, samples were deproteinized at 4 °C by centrifugation at

17,136 x g for 10 minutes. Supernatants were evaporated to dryness in a centrifugal evaporator at

36 °C (Savant SPD121P Speed-Vac concentrator. Thermo Fisher, Asheville, NC) and reconstituted

in 100 µL of 10% methanol in water + 0.1% formic acid, by means of consecutive vortexing,

orbital shaking and sonication. 5 µL of which were injected into a Sciex 4500 triple quadrupole
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mass spectrometer (Sciex, Foster City, California, USA) to determine 4-aminobutyric acid

(GABA) concentration. Chromatographic separations were conducted a 3 µm ACE C18-PFP

reversed-phase HPLC column (Mac-mod analytical, Chadds Ford, PA, USA) using an Acquity

binary pump (Waters, Milford, MA, USA) equipped with an in-line degasser at 0.3 mL/min flow-

rate and at 13 °C, to enhance the retention of the low-retained compounds, by means of a simple

binary gradient of acetonitrile partitioning in 3% acetonitrile in water, both containing 0.1%

formic acid. Compounds were eluted during the first 3 minutes, then it ramped to 100%. Total

run time was 45 minutes. Positive electrospray ionization multiple reaction monitoring transitions

were optimized for GABA (and 13C4-GABA), m/z 104.2>87 (108.2>90.9) and m/z 104.2>68.9

(108.2>73), using collision energies of 15 and 23, respectively, and unit mass resolution. GABA

concentrations were calculated by interpolation using an 8-point calibration curve, spanning

0.01 to 0.2 µM, constructed by supplementing medium with the appropriate amounts of GABA.

Quantification was conducted using MultiQuant 2.1 software (Sciex, Foster City, CA, USA).

Whole-cell patch-clamp. Whole-cell patch-clamp recordings were performed from

cells of cortical organoids in a similar condition as for MEA recordings: 6- to 8-week cortical

organoids were plated on 35 mm dishes that were previously coated with 100 µg/mL poly-L-

ornithine and 10 µg/ml laminin. Cells were fed twice a week and have been maintained for 24

weeks. The extracellular solution for patch-clamp experiments contained (in mM) the following:

130 NaCl, 3 KCl, 1 CaCl2, 1 MgCl2, 10 HEPES, and 10 glucose; pH 7.4 with 1 M NaOH (∼4

mM Na+ added). The internal solution for patch electrodes contained (in mM) the following:

138 K-gluconate, 4 KCl, 10 Na2-phosphocreatine, 0.2 CaCl2, 10 HEPES (Na+ salt), 1 EGTA,

4Mg-ATP, 0.3 Na-GTP; pH 7.4 with 1 M KOH (∼3 mM K+ added). The osmolarity of all

solutions was adjusted to 290mOsm. Electrodes for electrophysiological recording were pulled on

a Flaming/Brown micropipette puller (Model P-87, Sutter Instrument, CA, USA) from filamented

borosilicate capillary glass (1.2 mm OD, 0.69 mm ID, World Precision Instruments, FL, USA).

The electrode resistances were 3–8 MΩ. Patch-clamp experiments were performed with an
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Axon CV-4 headstage and Axopatch 200A amplifier (Molecular Devices, CA, USA) at room

temperature. Liquid junction potential correction (∼10 mV) was not applied. Electrophysiology

data were analyzed offline using pCLAMP 10 software (Molecular Devices, CA, USA).

Multi-electrode array (MEA) recording. Two to three 6-week cortical organoids were

plated per well in 12-well MEA plates (Axion Biosystems, Atlanta, GA, USA). Each well

contains 64 low-impedance (0.04 MΩ) platinum microelectrodes with 30 µm of diameter spaced

by 200 µm, yielding a total of 512 channels (8 wells containing organoids and 4 internal control).

The plate was previously coated with 100 µg/mL poly-L-ornithine and 10 µg/mL laminin, and

we performed four independent experiments in duplicates. Cells were fed twice a week and

measurements were collected 24 hours after the medium was changed, once a week, starting

at two weeks after plating (8 weeks of organoid differentiation). Recordings were performed

using a Maestro MEA system and AxIS Software Spontaneous Neural Configuration (Axion

Biosystems) with a customized script for band-pass filter (0.1-Hz and 5-kHz cutoff frequencies).

Spikes were detected with AxIS software using an adaptive threshold crossing set to 5.5 times the

standard deviation of the estimated noise for each electrode (channel). The plate was first allowed

to rest for three minutes in the Maestro device, and then four minutes of data were recorded.

For the MEA analysis, the electrodes that detected at least 5 spikes/min were classified as active

electrodes using Axion Biosystems’ Neural Metrics Tool. Bursts were identified in the data

recorded from each individual electrode using an inter-spike interval (ISI) threshold requiring a

minimum number of 5 spikes with a maximum ISI of 100 ms. A minimum of 10 spikes under

the same ISI with a minimum of 25% active electrodes were required for network bursts in the

well. The synchrony index was calculated using a cross-correlogram synchrony window of 20 ms.

Bright-field images were captured to assess for cell density and electrode coverage.

Custom MEA analysis. Custom MEA analysis and developmental time regression model

can be found in: https://github.com/voytekresearch/OscillatoryOrganoids. Raw MEA recordings

were converted to .mat files using Axion-provided functions and analyzed offline using custom
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MATLAB functions and scripts. Local field potential signals (LFP) from each of the 64 electrodes

were generated by low-pass filtering (FIR filter) and downsampling raw signals from 12,500 Hz

to 1,000 Hz (resample.m). Multi-unit spikes were detected as follows: each channel was first

referenced to the well median for every time point, similar to a common average reference (64

channels). The median was used instead of the mean to avoid biasing the reference during high

firing rate periods. Next, the re-referenced signal was bandpass filtered for 300-3,000 Hz with a

3rd-order Butterworth filter (butter.m). The adaptative spike threshold was set to be 5.5 standard

deviations, where the standard deviation was estimated from the median as previously described

(Quiroga et al., 2005) to avoid biasing the threshold for channels with high firing rates (thus an

artificially high threshold). Spike timestamps were taken as the peak time after the absolute value

of the signal crossed the threshold, but at least 1 ms from another spike (findpeaks.m). Spike

timestamps were then converted into binary vectors (1 ms bin size), summed across 64 channels,

and smoothed (conv.m) with a normalized 100-point (0.1 s) Gaussian window (gausswin.m) to

create a population spiking vector for each MEA well. Note that spikes from each channel do

not represent putative single-unit action potentials, as the spatial resolution of MEA electrodes

were too sparse. Multi-unit spiking was not sorted since total population spiking (of well) was

submitted for further analysis, rather than individual spike trains.

Network event analysis. A network event was detected when population spiking was i)

greater than 80% of the maximum spiking value over the length of the recording; ii) at least 1

spike/s; and iii) 1 second away from any other network events. The first peak after all 3 criteria

was satisfied was marked as t = 0, and the window of data from 0.5 s before to 2.5 s after the

peak was collected as the network event, as events almost always subsided 2.5 seconds after onset

by both algorithmic detection and visual inspection. Nearly all spiking channels experienced a

significant firing rate increase during network events. LFP data from all 64 channels from the

same timeframe were also collected for analysis. All events from different MEA wells obtained

on the same recording day were aggregated for statistical analysis and plotting. Subpeaks within
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an event were identified using findpeaks.m, where a subpeak must satisfy the following: i) peak

height of at least 25% of the first peak; ii) peak width of at least 50 ms; iii) at least 200 ms

away from the previous peak; and iv) peak prominence of 1 over Peak 1 height. Subpeak time

and the height relative to the initial peak were recorded. The inter-event interval coefficient of

variation (IEI CV) was calculated as the standard deviation of the inter-event interval divided

by its mean, where IEI is the time between consecutive network events within the same MEA

well. Event temporal correlation was calculated as the mean Pearson correlation coefficient of

population spiking vector between each pair of network event in the same MEA well across a

single recording session. Event spatial correlation was calculated as the mean Pearson correlation

coefficient between all pairs of 64 LFP channels during each 3-s network event.

Oscillatory spectral power analysis. Power spectral density (PSD) estimates were

computed using Welch’s method (pwelch.m), with a window length of 2 s and overlap of 1 s.

Oscillatory power was defined as peaks in the PSD above the aperiodic 1/f power law decay.

Thus, for each channel, a straight line was fit over the PSD in double-log space between 0.5-20

Hz using robust fit (robustfit.m), and oscillatory power was computed as the difference between

the mean log PSD power and the mean log fitted power (baseline), over 2.5-4.5 Hz. This method

accounts for non-oscillatory changes, such as slow transients or the aperiodic 1/f background

component, whereas standard wavelet filtering methods will confound the two (Donoghue et al.,

2020).

Phase Amplitude Coupling (PAC). LFP data from all 64 channels of each well was first

lowpass/bandpass filtered (eegfilt.m, EEGLAB) for delta (0-4 Hz) and high-frequency, broadband

(100-400 Hz) activity, sometimes referred to as high gamma. Delta phase was extracted by taking

the phase angle of the bandpassed delta signal Hilbert transform (hilbert.m, angle.m), while

gamma power was extracted by taking the squared magnitude of the filtered gamma. Gamma

power was smoothed with the same delta-band filter for display purposes, but not for subsequent

analysis. Note that analysis was performed for 100-200 Hz and 200-400 Hz separately, as LFP
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spectrum follows an inverse power law (1/f), and grouping a wide frequency band (100-400 Hz)

together would bias power estimates towards lower frequency limits ( 100 Hz). To compute PAC,

instantaneous delta phase was binned into 20 equidistant bins between -π and π, and gamma

power was sorted based on the corresponding delta phase at the same sample time and averaged

across the same phase bin. This procedure was performed separately for event and non-event

indices, where event indices are the same 3-second windows as described above in Network Event

Analysis, while all other times are considered as non-event time points. Modulation Index was

computed as the Kullback-Leibler divergence between the sum-normalized distribution of gamma

power across phase bins and a uniform distribution (Tort et al., 2010). Figure 1.3C presents

well-averaged MI across all 64 channels. For visualization in Figure 1.3B, the binned gamma

power vector for each channel was circularly shifted such that the phase of maximum gamma

power was -π.

Pharmacology. The pharmacological manipulation was performed using cortical organoid

plated on 4 MEA wells (n = 4, cortical organoid culture) the following drugs: 10 µM bicuculline,

100 µM picrotoxin, 50 µM muscimol, 20 µM CNQX, 20 µM AP5, 25 µM baclofen and 1 µM

TTX. In this assessment, baseline recordings were obtained immediately before and 15 minutes

after the addition of the compound. Three washes with PBS for total removal of the drug were

performed in washout experiments; fresh media was added and another recording was conducted

after 2 hours.

Preterm neonatal EEG. A preterm neonatal EEG dataset was obtained from a publicly

available dataset (Stevenson et al., 2017). Raw recordings were not available due to patient

confidentiality concerns. The dataset includes 567 recordings from 39 preterm neonates (24-38

weeks PMA), consisting of 23 EEG features computed from the entirety of each recording

(Table 1.2). See cited publication for details of features. Briefly, we chose to include features

derived from duration and timing of (interval between subsequent) network events in neonates and

organoids, as these are least affected by anatomical differences between the two model systems
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(i.e., skull filtering), as well as spectral features (delta, theta, and alpha power). 5%/50%/95%

refer to percentile of the feature distribution from a recording.

Resampled feature-age correlation. We computed Pearson’s correlation coefficient

between neonate age and each of the 12 EEG features, after a leave-K-groups-out resampling

procedure N times, where K is the number of neonates from whom all recordings were left out in

computing the correlation (50% of all neonates, resampling N = 100). An identical procedure

was performed to compute the correlation between organoid culture development time and LFP

features (K = 4 out of 8, 50%, N = 100). Mean and standard deviation were then computed over

all resampled draws in order to compare between organoid LFP and neonatal EEG to produce

Figure 1.4C and Figure 1.8D.

Neonate-organoid development time regression model. To compare the similarity of

developmental trajectory of cortical organoids and the preterm human brain, we trained an Elastic

Net (L1- and L2- regularized) regression model on only the preterm neonatal EEG features and

used that model (with all parameters held the same) to predict an equivalent organoid development

time for each recording time point over 40 weeks in culture. Specifically, the training dataset

consisted of a subset of the preterm EEG data; we discarded all “low-activity-period” features

(Lisman, 1997) since there was no equivalent period for organoid recordings, as well as features for

which we could not sensibly compute from organoid LFPs, such as interhemispheric synchrony.

This selection was done a priori, and 12 features remained, including 3 features for relative

spectral power in distinct frequency bands. The features corresponding to aspects of spontaneous

activity transient (SAT) timing, such as SATs per hour and SAT duration, were similarly computed

on organoid LFPs after network event detection described earlier (see Table 1.2 for a full list

of included and rejected features). This latter organoid LFP test dataset was never seen by the

regression model until prediction time. Training was performed using scikit-learn linear model

module [ElasticNetCV (Pedregosa et al., 2011)], with K-Group shuffle split cross-validation on

regularization hyperparameters, where K = 25% of groups, N = 200 shuffles. In other words, we
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found the best regularized linear model possible for predicting the age of preterm neonates using

those precomputed EEG features. This model was directly applied on organoid LFP features

to determine the corresponding development time of the organoids during 40 weeks in culture.

Control datasets were also submitted for prediction, including held-out preterm EEG (positive

control), and mouse primary culture, 2D iPSC culture, and human fetal culture (negative controls).

To quantify the model’s ability to predict the developmental trend of the out of sample datasets, we

compute the Pearson correlation coefficient between the predicted and actual age of each dataset.

To eliminate the potential confound of a difference in frequency-dependent filtering properties of

the skull and difference in spatial integration of currents in macroscopic EEG electrodes compared

to microscopic planar MEA electrodes, the same analysis was performed after discarding the

spectral features (leaving 9 features total). This result is presented in Figure 1.8E, in addition to

the prediction for the control datasets.

Quantification and statistical analysis

Statistical analysis. Data are presented as mean ± s.e.m., unless otherwise indicated,

and it was obtained from different samples. No statistical method was used to predetermine the

sample size. The statistical analyses were performed using Prism software (GraphPad, San Diego,

CA, USA). Student’s t-test, Mann–Whitney-test, or ANOVA with post hoc tests were used as

indicated. Significance was defined as P < 0.05(*), P < 0.01(**), or P < 0.001(***).

Statistics and Regression for custom MEA analysis. To fit linear or quadratic models in

Figure 1.2F, G, I, we used organoid developmental time (in days) as input and electrophysiological

features as output (LinearModel.fit, MATLAB). Reported R2 and p values are model statistics

over the entire dataset. All events from different MEA wells on the same recording day were

aggregated as samples drawn from the same distribution.
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Data and code availability

Single-cell RNA sequencing data. All datasets and/or analyses generated during the

current study are available from the corresponding author upon reasonable request. Single-cell

RNA sequencing data that support the findings of this study have been deposited at NCBI GEO:

GSE130238.

Acknowledgements

Chapter 1, in full, is a reprint of the material as it appears in the following manuscript

published in Cell Stem Cell: Trujillo*, C. A., Gao*, R., Negraes*, P. D., Gu, J., Buchanan,

J., Preissl, S., Wang, A., Wu, W., Haddad, G. G., Chaim, I. A., Domissy, A., Vandenberghe,

M., Devor, A., Yeo, G. W., Voytek, B., & Muotri, A. R. (2019). Complex oscillatory waves

emerging from cortical organoids model early human brain network development. The

dissertation author was one of the primary investigators and co-first authors of this paper.

48



1.5 Supplemental Figures & Tables

Figure 1.5: Figure S1. Cellular and molecular characterization of human cortical organoids.
Related to Figure 1.1. (A) Organoids are composed of a proliferative region surrounded by
intermediate progenitor cells, cortical neurons. Scale bar, 50 µm. (B) UMAP plots highlighting
time point specific cells. (C) UMAP plots for individual time point showing cell-type specific
marker expression levels (D) Violin plots of marker gene expression across all clusters. (E) Sub-
cluster analysis of GAD2 population from 10-month cortical organoids. (F) GABAergic neuronal
markers expression of 10-month cortical organoids. (G) Detection of GABA neurotransmitter in
the culture media using mass spectrometry. The average GABA concentration in the media was
0.028 ± 0.014 µM.
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Figure 1.6: Figure S2. Long-term cortical organoid network activity. Related to Figure 1.2.
(A) Electrophysiological characteristics of 6-month human iPSC-derived cortical organoids.
Whole-cell current-clamp recording of a representative neuron from 6-month cortical organoids
showing repetitive action potential firing in response to 50 pA current injection from a resting
membrane potential of -63 mV. Application of 1 µM TTX abolished the firing (lower panel). (B)
Whole-cell voltage-clamp recording in the same neuron showing voltage-gated K+ current and
TTX-sensitive Na+ current, elicited from a holding potential of -80mV to the indicated voltages.
(C) Plot of the peak current sizes of K+ channels and Na+ channels as a function of voltage
determined from neurons of 6-month cortical organoids (peak INa size = -1466.86 ± 575.18
pA. Peak IK size = 3031.79 ± 1405.19 pA. n = 6 neurons). (D) Voltage-clamp recording at -60
mV exhibiting spontaneous excitatory postsynaptic currents (sEPSCs) in another representative
neuron (frequency of sEPSCs = 0.25 ± 0.10 Hz; n = 5 neurons. Amplitude of sEPSCs = -19.92
± 5.90 pA; n = 5 neurons; we observed sEPSCs in 84% of the tested neurons). Application
of NBQX and AP5 fully inhibited the sEPCS. (E) Representative traces showing that a human
iPSC-derived neuron displays spontaneous AP firing (AP firing frequency = 13.67 ± 1.11 Hz;
n = 6 neurons). The data are shown as mean ± s.e.m. (F) Representative activity heatmap and
bright-field image of cortical organoids on the MEA plate. (G) Schematic representation of
the electrical activity features analyzed from the MEA recordings. Each bar represents a spike;
and a spike cluster (in blue) represents a burst. Bursts occurring at the same time in different
channels characterize a network burst. The synchrony index is based on the cross-correlogram and
represents a measure of similarity between two spike trains. (H) Temporal evolution of network
activity characterized by different parameters. (I) Raster plots illustrating the development of
network activity. (J) Consistent and reproducible development of electrical activity in cortical
organoids over time. The data are shown as mean ± s.e.m (n = 8, independent experiments
performed in duplicates using two clones of an iPSC line).
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Figure 1.7: Figure S3. Extended characterization of cortical organoid network electrophysiology.
Related to Figure 1.2. (A) Spikes detected on 9 channels. Black traces represent single spikes,
blue and red traces represent the average of positive and negative spikes, respectively. Spike
trains are not sorted for their polarity in the subsequent analyses, as total population spiking is
the main feature of interest. (B) Representative oscillatory network events. Each overlapping
trace represents a single occurrence of an event recorded on the same channel. LFP polarity of
events differs between channels due to the spatial configuration of cells around the electrode. (C)
Event onset peak (Peak 1) increases in amplitude until 30 weeks, while (D) subpeak amplitude
continues to increase (for the 2nd-4th peak) throughout development. (E) Subsequent peaks occur
with a consistent latency of 400 ms after the previous peak, particularly for Peak 3 and 4. (F)
Temporal similarity of network events during the 3-s window is high at early time points, but
decreases with development, acquiring more variable dynamics within an event. The data showed
in C and F are presented as mean ± s.e.m., linear (C, F) model regression. (G) Comparison of the
protocol for neurosphere and cortical organoid generation. (H) Network-wide giant depolarizing
potentials occur in neurosphere at a similar rate to those found in organoids recordings, and visible
perturbations are observed in the LFP trace. However, the network recruitment in neurospheres
is lower with significantly shorter events. Coherent low-frequency depolarizations are observed
in filtered LFP events, but with much lower amplitude when scaled to the same range as those
recorded from organoids (I, J).
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Figure 1.8: Figure S4. Network activity in cortical organoids and oscillatory features in the
developing human brain. Related to Figure 1.4. (A, B) Time-frequency and spectral representation
of time series data from a 6-month cortical organoid, demonstrating oscillatory phenomenon.
Spectrogram (A) of organoid LFP shows bursts of activity localized at low frequencies, as well
as 100Hz and beyond, while power spectral density (PSD, B) displays canonical 1/f power law
decay and a narrow oscillatory peak at 3 Hz. (C) Comparison of preterm neonate EEG and
cortical organoid features over time. For included EEG features, see Table 1.2. (D) Distributions
of resampled Pearson correlation coefficients between feature and age for preterm neonate and
organoid. (E) Model-predicted developmental time (y-axis, age in weeks) follows actual weeks-
in-culture (x-axis) for organoids (orange and blue), as well as true age of held-out preterm neonate
data points (black), excluding spectral features. Dashed line represents unity, signifying perfect
prediction. Large circles on solid lines and shaded regions denote mean ± std of prediction,
respectively, while dots indicate per-sample prediction (n = 8 for organoids at all time points).
The unnormalized feature weights are: Constant: 53.93093; SATs per hour: 0.05791; RMS SAT
duration: 0.17439; SAT duration (50%): 0.46857; SAT duration (5%): -1.59115; SAT duration
(95%): -0.17140; RMS Inter-SAT Duration: 1.01745; Inter-SAT duration (50%): -1.67926;
Inter-SAT duration (5%): 0.00000; Inter-SAT duration (95%): -0.24631; Relative Delta Power:
-31.94628; Relative Theta Power: -39.72896; and Relative Alpha Power: 30.92235.
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Table 1.1: Supplemental Table 1. Top expressed genes of each cell cluster. Related to Figure 1.1.

cluster gene avg_logFC pct.1 pct.2 p_val_adj
GABAergic Neurons DLX5 1.17944 0.403 0.362 0.47966
GABAergic Neurons DLX6-AS1 0.97634 0.75 0.396 5.59E-81
GABAergic Neurons SEZ6L2 0.96254 0.945 0.713 2.58E-22
GABAergic Neurons SYT1 0.91593 0.947 0.814 2.55E-20
GABAergic Neurons CHCHD2 0.84772 0.468 0.45 0.01172
GABAergic Neurons HMP19 0.84097 0.734 0.755 0.17341
GABAergic Neurons ARL4D 0.82671 0.413 0.485 1
GABAergic Neurons INSM1 0.82003 0.813 0.444 2.87E-57
GABAergic Neurons DLX2 0.81130 0.361 0.336 2.48E-06
GABAergic Neurons SCG3 0.78232 0.761 0.732 0.03532
GABAergic Neurons RTN3 0.78167 0.958 0.907 1.17E-12
GABAergic Neurons NSG1 0.76102 0.876 0.742 3.63E-08
GABAergic Neurons DCX 0.75629 0.782 0.736 1.97E-27
GABAergic Neurons TERF2IP 0.74991 0.95 0.851 4.66E-28
GABAergic Neurons PAFAH1B3 0.74128 0.937 0.853 9.39E-21
GABAergic Neurons YWHAQ 0.74116 0.971 0.921 2.55E-53
GABAergic Neurons DAAM1 0.73920 0.913 0.765 5.32E-10
GABAergic Neurons TAGLN3 0.72672 0.905 0.774 6.58E-05
GABAergic Neurons TTC3 0.71927 0.976 0.909 8.55E-16
GABAergic Neurons STMN2 0.69866 0.905 0.892 8.26E-52
GABAergic Neurons TAC3 0.69627 0.342 0.404 1.99E-12
GABAergic Neurons CD24 0.67659 0.95 0.808 6.11E-12
GABAergic Neurons TXNIP 0.67286 0.939 0.832 1.04E-05
GABAergic Neurons STMN4 0.66186 0.934 0.885 0.04858
GABAergic Neurons NREP 0.64996 0.918 0.802 0.00264
GABAergic Neurons RAB3A 0.63717 0.937 0.771 1.01E-12
GABAergic Neurons SCGN 0.63426 0.216 0.15 1.62E-28
GABAergic Neurons SVBP 0.63364 0.932 0.717 1.74E-06
GABAergic Neurons BEX1 0.62955 0.821 0.835 1.69E-37
GABAergic Neurons DSTN 0.62593 0.955 0.894 2.21E-24
GABAergic Neurons GAD1 0.61455 0.679 0.33 1.30E-41
GABAergic Neurons PROX1 0.61165 0.121 0.332 4.76E-93
GABAergic Neurons HN1 0.60568 0.963 0.936 6.77E-94
GABAergic Neurons DCLK1 0.60078 0.368 0.657 2.00E-22
Glutamatergic Neurons NEUROD6 1.49931 0.9 0.771 0
Glutamatergic Neurons BHLHE22 1.46368 0.905 0.793 0
Glutamatergic Neurons STMN2 1.43649 0.99 0.834 0
Glutamatergic Neurons GRIA2 1.39439 0.829 0.782 0
Glutamatergic Neurons NEUROD2 1.35791 0.893 0.827 0
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. . . Table 1.1 continued.
cluster gene avg_logFC pct.1 pct.2 p_val_adj
Glutamatergic Neurons SNAP25 1.24934 0.803 0.764 0
Glutamatergic Neurons TTC9B 1.20497 0.811 0.771 0
Glutamatergic Neurons SYT4 1.11807 0.762 0.803 0
Glutamatergic Neurons SNCA 1.10911 0.829 0.643 0
Glutamatergic Neurons HMP19 1.10021 0.757 0.753 0
Glutamatergic Neurons LY6H 1.09133 0.778 0.548 0
Glutamatergic Neurons RAB3A 1.08320 0.857 0.726 0
Glutamatergic Neurons INA 1.08214 0.777 0.777 0
Glutamatergic Neurons GAP43 1.06736 0.943 0.731 0
Glutamatergic Neurons HPCA 1.03546 0.73 0.624 0
Glutamatergic Neurons CXADR 1.03219 0.862 0.651 0
Glutamatergic Neurons TSPAN13 1.02606 0.809 0.57 0
Glutamatergic Neurons CD24 1.01863 0.91 0.752 0
Glutamatergic Neurons SYT1 1.00629 0.891 0.773 0
Glutamatergic Neurons MAPT 1.00501 0.737 0.688 0
Glutamatergic Neurons DCX 1.00326 0.865 0.661 0
Glutamatergic Neurons RTN1 0.98969 0.935 0.718 0
Glutamatergic Neurons NSG1 0.96682 0.796 0.716 0
Glutamatergic Neurons SCG3 0.95190 0.726 0.736 0
Glutamatergic Neurons CELF4 0.94679 0.671 0.721 1.75E-274
Glutamatergic Neurons CRMP1 0.91715 0.878 0.727 0
Glutamatergic Neurons LMO3 0.90245 0.712 0.805 1.51E-267
Glutamatergic Neurons NELL2 0.90035 0.749 0.643 0
Glia KIAA0101 1.09206 0.638 0.486 2.16E-187
Glia TTYH1 1.07238 0.948 0.689 0.00E+00
Glia SLC1A3 1.04241 0.855 0.621 0.00E+00
Glia MT2A 1.00780 0.89 0.624 0.00E+00
Glia SFRP1 1.00450 0.938 0.684 0.00E+00
Glia SOX2 1.00279 0.946 0.643 0.00E+00
Glia HES1 0.99522 0.832 0.59 0.00E+00
Glia ID4 0.92316 0.912 0.687 0.00E+00
Glia CLU 0.91605 0.978 0.732 0.00E+00
Glia PEA15 0.89375 0.917 0.62 0.00E+00
Glia HOPX 0.86840 0.818 0.622 0.00E+00
Glia PMP2 0.78593 0.775 0.572 5.97E-304
Glia METRN 0.76712 0.798 0.583 0.00E+00
Glia ZFP36L1 0.74666 0.73 0.539 3.48E-258
Glia PTN 0.74622 0.996 0.894 0.00E+00
Glia IFI44L 0.74479 0.79 0.595 0.00E+00
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. . . Table 1.1 continued.
cluster gene avg_logFC pct.1 pct.2 p_val_adj
Glia CDO1 0.74388 0.869 0.631 0.00E+00
Glia VIM 0.73690 0.993 0.858 0.00E+00
Glia CENPH 0.71893 0.588 0.58 8.18E-45
Glia HSPB1 0.71396 0.904 0.624 0.00E+00
Glia PDLIM3 0.71318 0.807 0.62 0.00E+00
Glia FGFBP3 0.68433 0.797 0.632 0.00E+00
Glia FAM107A 0.68371 0.748 0.593 1.17E-226
Glia C8orf4 0.68118 0.668 0.564 2.34E-135
Glia B2M 0.67571 0.897 0.569 0.00E+00
Glia PON2 0.67504 0.671 0.426 2.30E-204
Glia STXBP6 0.66039 0.732 0.638 1.59E-177
Glia SOX3 0.65821 0.76 0.435 0.00E+00
Glia HMGB2 0.65603 0.824 0.572 0.00E+00
Glia QKI 0.64190 0.775 0.611 1.01E-217
Glia SRI 0.64014 0.899 0.654 0.00E+00
Glia PHGDH 0.63803 0.766 0.615 1.70E-216
Glia APOE 0.61466 0.78 0.575 6.86E-190
Glia FOS 0.60483 0.777 0.642 7.93E-168
Glia PSAT1 0.60446 0.788 0.598 1.05E-253
Glia C1orf61 0.60285 0.976 0.863 0.00E+00
Glia DBI 0.60169 0.932 0.781 0.00E+00
Intermediate Progenitors EOMES 1.14946 0.697 0.545 1.50E-123
Intermediate Progenitors TAC3 1.12454 0.535 0.392 3.21E-41
Intermediate Progenitors NHLH1 1.08712 0.766 0.53 4.67E-254
Intermediate Progenitors GADD45G 1.00439 0.794 0.619 5.82E-155
Intermediate Progenitors ELAVL2 0.88637 0.828 0.724 1.16E-130
Intermediate Progenitors NNAT 0.88553 0.911 0.841 8.74E-188
Intermediate Progenitors RND3 0.64990 0.54 0.47 3.81E-21
Intermediate Progenitors NEUROG1 0.62298 0.59 0.585 1.87E-10
Intermediate Progenitors GDAP1L1 0.62253 0.757 0.671 1.08E-57
Intermediate Progenitors TAGLN3 0.60150 0.856 0.77 1.68E-98
Early Progenitors IGFBP7 0.89242 0.559 0.394 1.49E-30
Early Progenitors TTR 0.84753 0.844 0.49 0
Early Progenitors S100B 0.74367 0.833 0.481 0
Early Progenitors SPARCL1 0.61008 0.928 0.434 0
Early Progenitors TPPP3 0.60842 0.539 0.293 5.00E-23
Early Progenitors CA2 0.58266289 0.614 0.403 4.70E-69
Early Progenitors RBP1 0.56764771 0.879 0.438 0
Early Progenitors TRPM3 0.56440266 0.768 0.324 0
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. . . Table 1.1 continued.
cluster gene avg_logFC pct.1 pct.2 p_val_adj
Early Progenitors CD9 0.54907859 0.743 0.263 0
Early Progenitors ID3 0.54768285 0.889 0.558 0
Early Progenitors CXCL14 0.53064106 0.567 0.402 1.01E-10
Early Progenitors ID1 0.51512222 0.809 0.495 0
Mitotic Cells UBE2C 2.08768 0.999 0.38 0
Mitotic Cells TOP2A 1.92072 0.988 0.456 0
Mitotic Cells CDC20 1.88666 0.969 0.294 0
Mitotic Cells CENPF 1.83910 0.993 0.513 0
Mitotic Cells NUSAP1 1.79161 0.985 0.531 0
Mitotic Cells PTTG1 1.77245 1 0.532 0
Mitotic Cells CCNB2 1.73661 0.956 0.298 0
Mitotic Cells CCNB1 1.71891 0.939 0.362 0
Mitotic Cells CDK1 1.68391 0.981 0.507 0
Mitotic Cells ASPM 1.59134 0.939 0.436 0
Mitotic Cells BIRC5 1.58211 0.963 0.37 0
Mitotic Cells TPX2 1.55923 0.94 0.524 0
Mitotic Cells PLK1 1.51556 0.88 0.386 2.04E-293
Mitotic Cells MAD2L1 1.51083 0.967 0.555 0
Mitotic Cells FAM64A 1.51073 0.91 0.313 0
Mitotic Cells CKS2 1.50084 0.997 0.645 0
Mitotic Cells PBK 1.47827 0.917 0.414 0
Mitotic Cells CCNA2 1.46832 0.92 0.536 0
Mitotic Cells GTSE1 1.44523 0.899 0.306 0
Mitotic Cells AURKA 1.43015 0.876 0.399 1.86E-293
Mitotic Cells CDKN3 1.40121 0.859 0.321 1.75E-264
Mitotic Cells AURKB 1.39178 0.901 0.299 0
Mitotic Cells NUF2 1.38631 0.898 0.478 0
Mitotic Cells KPNA2 1.38186 0.982 0.578 0
Mitotic Cells SMC4 1.37867 0.955 0.493 0
Mitotic Cells HMGB2 1.36699 1 0.612 0
Mitotic Cells CDCA3 1.36522 0.854 0.425 5.74E-253
Mitotic Cells PSRC1 1.34100 0.914 0.501 2.10E-296
Mitotic Cells CENPA 1.32905 0.869 0.291 0
Mitotic Cells CKS1B 1.32614 0.971 0.525 0
Other LGALS1 1.34401 0.97 0.479 1.62E-80
Other IGF2 1.26378 0.955 0.402 7.22E-142
Other COL3A1 1.25618 0.973 0.439 1.48E-136
Other RBP1 1.14081 0.967 0.531 1.32E-123
Other MGP 1.00395 0.602 0.45 5.94E-05

60



. . . Table 1.1 continued.
cluster gene avg_logFC pct.1 pct.2 p_val_adj
Other DCN 0.95928 0.554 0.484 0.56345
Other IFITM3 0.91015 0.708 0.362 5.14E-36
Other COL1A1 0.89389 0.545 0.363 1
Other SPARC 0.83734 0.916 0.663 2.93E-66
Other APOE 0.81812 0.88 0.617 7.53E-38
Other ANXA1 0.80045 0.867 0.335 6.95E-109
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Table 1.2: Supplemental Table 2. Electrophysiological features in preterm neonatal EEG dataset and
analogous features computed in organoid LFP. Related to Figure 1.4.

Neonatal EEG features Computed organoid LFP features
Envelope (50%) None
Envelope (5%) None
Envelope (95%) None
rEEG (50%) None
rEEG (5%) None
rEEG (95%) None
SATs per hour Network Events per hour
RMS SAT duration RMS network event duration
SAT duration (50%) Network event duration (50%)
SAT duration (5%) Network event duration (5%)
SAT duration (95%) Network event duration (95%)
RMS Inter-SAT Duration RMS Inter-event Duration
Inter-SAT duration (50%) Inter-event duration (50%)
Inter-SAT duration (5%) Inter-event duration (5%)
Inter-SAT duration (95%) Inter-event duration (95%)
Temporal Theta Power None
Activation Synchrony Index None
Interhemispheric Correlation None
Total Spectral Power None
Relative Delta Power Relative Delta Power
Relative Theta Power Relative Theta Power
Relative Alpha Power Relative Alpha Power
Relative Beta Power Relative Beta Power

Bolded and italic cells indicate features used in the development time prediction model.
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Chapter 2

Inferring synaptic excitation/inhibition

balance from field potentials

Abstract

Neural circuits sit in a dynamic balance between excitation (E) and inhibition (I). Fluctu-

ations in E:I balance have been shown to influence neural computation, working memory, and

information flow, while more drastic shifts and aberrant E:I patterns are implicated in numerous

neurological and psychiatric disorders. Current methods for measuring E:I dynamics require

invasive procedures that are difficult to perform in behaving animals, and nearly impossible in

humans. This has limited the ability to examine the full impact that E:I shifts have in cognition

and disease. In this study, we develop a computational model to show that E:I changes can

be estimated from the power law exponent (slope) of the electrophysiological power spectrum.

Predictions from the model are validated in published data from two species (rats and macaques).

We find that reducing E:I ratio via the administration of general anesthetic in macaques results

in steeper power spectra, tracking conscious state over time. This causal result is supported by

inference from known anatomical E:I changes across the depth of rat hippocampus, as well as
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oscillatory theta-modulated dynamic shifts in E:I. Our results provide evidence that E:I ratio may

be inferred from electrophysiological recordings at many spatial scales, ranging from the local

field potential to surface electrocorticography. This simple method for estimating E:I ratio—one

that can be applied retrospectively to existing data—removes a major hurdle in understanding a

currently difficult to measure, yet fundamental, aspect of neural computation.

2.1 Introduction

Neurons are constantly bombarded with spontaneous synaptic inputs. This state of fluctu-

ating activity is referred to as the high-conductance state (Destexhe et al., 2003), and gives rise to

the asynchronous, irregular (Poisson-like) firing observed in vivo (Destexhe et al., 2001). In this

state, neural circuits sit in a balance between synaptic excitation (E) and inhibition (I), typically

consisting of fast glutamate and slower GABA inputs, respectively, where inhibition is two to six

times the strength of excitation (Alvarez & Destexhe, 2004; Xue et al., 2014). Physiologically, the

balance of E:I interaction is essential for neuronal homeostasis (Turrigiano & Nelson, 2004) and

the formation of neural oscillations (Atallah & Scanziani, 2009). Computationally, E:I balance

allows for efficient information transmission and gating (Salinas & Sejnowski, 2001; Vogels &

Abbott, 2009), network computation (Mariño et al., 2005), and working memory maintenance

(Lim & Goldman, 2013). Conversely, an imbalance between excitation and inhibition, during key

developmental periods or tonically thereafter, is implicated in neurological and psychiatric disor-

ders such as epilepsy (González-Ramírez et al., 2015; Symonds, 1959), schizophrenia (Uhlhaas

& Singer, 2010), and autism (Dani et al., 2005; Mariani et al., 2015; Rubenstein & Merzenich,

2003), as well as impairments in information processing and social exploration (Yizhar et al.,

2011).

Given such a state of intricate balance and its profound consequences when disturbed,

quantifying the E:I ratio could aid in better characterizing the functional state of the brain. Existing

70



methods for estimating E:I ratio focus predominantly on interrogation of precisely selected

cells, either through identification of excitatory and inhibitory neurons based on extracellular

action potential waveforms (Peyrache et al., 2012), or by intracellular voltage-clamp recordings

to measure synaptic currents (Monier et al., 2008), often combined with pharmacological or

optogenetic manipulations (Reinhold et al., 2015; Xue et al., 2014). These methods are invasive

and are restricted to small populations of cells, making them difficult to apply clinically and to

in vivo population-level analyses critical for understanding neural network functioning. Other

methods, such as magnetic resonance spectroscopy (Henry et al., 2011) and dynamic causal

modeling (Legon et al., 2016), are able to provide greater spatial coverage, enabling the sampling

of E:I ratio across the brain. However, this gain comes at a cost of temporal resolution –

requiring several minutes of data for a single snapshot – and are based on restrictive connectivity

assumptions.

Here, we aim to address this important gap in methodology to measure E:I ratio with

broad population coverage and fine temporal resolution. Two recent lines of modeling work

motivate our starting hypothesis. First, it has been shown that synaptic input fluctuations during

the high conductance state can be accurately modeled by a summation of two stationary stochastic

processes representing excitatory and inhibitory inputs (Alvarez & Destexhe, 2004). These inputs

have different rates of decay, corresponding to a faster AMPA current and a slower GABAA

current, which can be readily differentiated in the frequency domain and computationally inferred

from single membrane voltage traces (Pospischil et al., 2009)(Fig. 2.1B). Second, population-

level neural field recordings, such as the local field potential (LFP) and electrocorticography

(ECoG), have been shown to be primarily dominated by postsynaptic currents (PSC) across large

populations (Buzsáki et al., 2012; Mazzoni et al., 2015; Miller et al., 2009). Additionally, recent

work by (Haider et al., 2016) observed tight coupling between the LFP and synaptic inputs in

the time domain. Thus, we combine these two findings and reason that changes in the relative

contribution between excitatory and inhibitory synaptic currents must also be reflected in the field
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potential, and in particular, in the frequency domain representation (power spectral density, or

PSD) of LFP and ECoG recordings. In this work, we derive a straightforward metric that closely

tracks E:I ratio via computational modeling, and demonstrate its empirical validity by reanalyzing

publically available databases from two different mammalian species. Specifically, we test the

hypotheses that anatomical and theta oscillation-modulated changes in excitation and inhibition in

the rat hippocampus can be inferred from CA1 local field potentials, and that anesthesia-induced

global inhibition is reflected in macaque cortical electrocorticography.

2.2 Materials & Methods

LFP simulation. We simulate local field potentials under the high conductance state

(Alvarez & Destexhe, 2004), with the assumption that the LFP is a linear summation of total

excitatory and inhibitory currents (Mazzoni et al., 2015). Poisson spike trains from one excitatory

and one inhibitory population are generated by integrating interspike intervals (ISI) drawn from

independent exponential distributions, with specified mean rate parameter (Fig. 2.1A). Each

spike train is convolved with their respective conductance profiles, which are modeled as a

difference-of-exponentials defined by the rise and decay time constants of AMPA and GABAA

receptors (Eq.2.1, Fig. 2.1B). Aggregate values for synaptic constants are taken from CNRGlab @

UWaterloo (see Neurotransmitter Time Constants in Ref; Table 2.1). The two resulting time series

represent total excitatory (gE) and inhibitory (gI) conductances, respectively (Fig. 2.1C). E:I ratio

is defined as the ratio of mean excitatory conductance to mean inhibitory conductance over the

simulation time, and specific E:I ratios are achieved by multiplying the inhibitory conductance

by a constant, such that mean gI is 2-6 times mean gE. To calculate current, conductances are

multiplied by the difference between resting potential (-65 mV) and AMPA and GABAA reversal

potential, respectively. Local field potential (LFP), finally, is computed as the summation of the

total excitatory and inhibitory current. All simulation parameters are specified in Table 2.1. Total
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LFP power is normalized to unity for each E:I ratio.

PSC(t) = C(−e
−t

τrise + e
−t

τdecay ) (2.1)

Equation 1. Difference-of-exponential PSC in time domain

Table 2.1: LFP Simulation Parameters.

Parameter Value
Population Firing Rate (E, I) 2 Hz, 5 Hz
Population Size (E, I) 8000, 2000
Resting Membrane Potential -65 mV
Reversal Potential (AMPA, GABAA) 0 mV, -80 mV
Conductance Rise Time (AMPA, GABAA) 0.1 ms, 0.5 ms
Conductance Decay Time (AMPA, GABAA) 2 ms, 10 ms
E:I Ratio 1:2 to 1:6

Power spectral density (PSD). For all time series data (simulated and recorded LFP,

ECoG), the PSD is estimated by computing the median of the square magnitude of the sliding

window (short-time) Fourier transform (STFT). The median was used instead of the mean

(Welch’s method) to account for the non-Gaussian distribution of spectral data, as well as to

eliminate the contributions of extreme outliers. All STFT are computed with a window length of

1 second (2-seconds for CA1 data), and an overlap length of 0.25 seconds. A hamming window

of corresponding length is applied prior to taking the FFT.

1/f Slope Fitting. To compute the 1/f power law exponent (log-log slope), we use robust

linear regression (MATLAB robustfit.m) to find the slope for the line of best fit over specified

frequency ranges of the PSD (30-50 Hz, 40-60 Hz for macaque ECoG due to the prescence of

oscillations near 30Hz) (Eq.2).

argminb,χ [log10PSD− (b+χlog10F)], F ∈ [30,50]or [40,60]Hz (2.2)
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Equation 2. Log-Log Linear Fit Parameter over Empirical PSD

Hippocampal LFP and CA1 depth analysis. LFP data (1250 Hz sampling rate) is

recorded in stratum pyramidale of CA1 via 4 to 8 shank electrodes (200-µm inter-shank distance),

with 8 electrodes (160-µm2 area) along the depth of each shank (20-µm spacing), perpendicular

to the pyramidal cell body layer (Mizuseki et al., 2009). PSD is computed for each electrode as

specified above, and 1/f slope extracted. As in (Mizuseki et al., 2011), we align the shanks such

that the electrode with the maximal ripple power (150-250 Hz) is set to position 0, the middle

of stratum pyramidale. Other electrodes are vertically translated accordingly. This procedure is

repeated for all shanks in every recording (4 rats, 20 sessions total), resulting in slope estimates

spanning a depth of 280-µm, centered on the pyramidal layer. AMPA and GABAA synapse

densities are adapted from (Megías et al., 2001), for proximal stratum oriens and stratum radiatum

dendrites, and smoothed with a 5-point Gaussian window to produce 15 data points at positions

equivalent to LFP electrodes. Spearman correlation is computed by pooling slope values at the

same depth across all sessions and all rats.

Multivariate Regression Model. Since the synaptic density estimates for E and I are

independent but correlated measurements, and E:I ratio is dependent on both previous measures,

we built a multivariate regression model to better delineate contributions from the synaptic

variables. Combinations of E, I, and E:I ratio were used as predictors, and slope as the predicted

variable, and we compute model coefficient, significance, and ordinary and adjusted R2 values

(MATLAB, LinearModel.fit). In addition, bootstrap analysis was performed for each predictor

combination (custom Python code), wherein 25 subsamples were randomly selected from the

dataset and a regression model was built to compute one adjusted R2 value for the subsampled

model. This was repeated 500 times to build a distribution of adjusted R2 values for each model

(predictor combination), and model fitness was compared using paired-samples t-test.

Theta phase-modulated slope. Theta oscillation is first isolated with a FIR bandpass

filter 5-12 Hz, (EEGLAB, eegfilt.m). Theta phase is computed as the complex phase angle of
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the Hilbert transform of the theta oscillation. Segments of theta phase are categorized as peak

[-π/2 to π/2, through 0] or trough [π/2 to 3π/2, through π]. Each corresponding segment in the

raw data ( 75 samples) is then labeled as peak or trough, Hamming-windowed, and padded to

1250 samples. Average PSD for each phase category is computed as the median of all windowed

FFT of the data segments of that category. 1/f slope is then fit to the average PSDs. Per-channel

significance statistics are calculated by fitting 1/f slope to each individual cycle STFT for each

channel and compared using two-sample t-test. To avoid power contamination in the short-time

window estimates from observed beta oscillation, LFP data is notch filtered between 15-25 Hz.

All results do not change when not filtered for beta, hence are not presented below.

Macaque ECoG During Anesthesia. ECoG data was collected from 2 macaque mon-

keys during rest, delivery of anesthesia (propofol, 5 & 5.2 mg/kg), and recovery (Yanagawa et al.,

2013). PSD was computed for all ECoG channels (n = 128) for each experimental condition and

fitted for 1/f slope. Due to clear gamma oscillation near 30 Hz biasing slope estimates, we fit

over 40-60 Hz to avoid oscillatory contamination. We then compared slope fit differences at each

electrode between conditions (paired-samples t-test). Time resolved slope fit was achieved by

computing sliding window spectra (absolute value squared of FFT) throughout the duration of

the recording (1 s window, 0.25 s step), and a slope estimate was computed for each window. A

15-second median filter was applied to smooth the slope time series plot for Fig. 2.4D. Simulation

and analysis code can be found at https://github.com/voytekresearch/EISlope.

2.3 Results

E:I ratio drives 1/f changes in simulation

To model LFP under the high conductance state, we simulate an efferent “LFP” population

receiving independent Poissonic spike trains from an excitatory and an inhibitory population, as

detailed in the Methods. In the frequency domain, we observe that the power spectral density of the
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LFP (LFP-PSD) follows a decaying (1/f) power law for frequencies past 20 Hz (negatively linear

in log-log plot), which directly results from adding the two current components, both following

power law decays (Fig. 2.1D). Note that the current-PSDs begin decaying at different frequencies,

due to the different rise and decay time constants of AMPA and GABAA conductance profiles,

which have been previously observed in intracellular models of the balanced, high conductance

state (Destexhe & Rudolph, 2004).

By changing the relative contributions of excitation and inhibition (E:I ratio), we shift

the frequency at which the current-PSDs cross over, which in turn produces different LFP-PSD

slopes (power law exponent) in the intermediate frequency range (Fig. 2.1E). To quantify this

relationship, we vary E:I ratio from 1:2 to 1:6, and observe that LFP-PSD slope between 30 to

50 Hz positively correlates with E:I ratio (r = 0.55, p < 0.01; Fig. 2.1F). The change in slope

is restricted to only the low-to-intermediate frequency ranges (below 100 Hz), as we observe a

steady decline in correlation between E:I ratio and PSD slope when slope is fitted across shifting,

20-Hz wide frequency windows (Fig. 2.1G). For subsequent slope analyses, we use a 20-Hz

window of the lowest possible frequencies that are above visible oscillatory peaks in the PSD, as

a clear drop in correlation is observed when a narrowband oscillation, such as beta (15-25 Hz), is

present. Additionally, we avoid high frequency regions because action potentials and firing rate

changes have been shown to alter high gamma power at frequencies as low as 50 Hz (Manning

et al., 2009; Miller et al., 2007; Ray & Maunsell, 2011). In summary, our forward LFP model

suggests that E:I ratio is monotonically related to LFP-PSD slope in a range between 30-70 Hz,

when uncorrupted by oscillatory peaks, and that increasing E:I ratio increases (flattens) PSD

slope.
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Figure 2.1: E:I ratio correlates with PSD slope in simulation. (A) Model schematic: an “LFP
population” receives input from two Poisson populations, one excitatory and one inhibitory. (B)
AMPA and GABAA conductance profiles follow a difference-of-exponentials with different rise
and decay time constants. (C) Example time trace of simulated total synaptic currents (top) and
LFP (bottom). (D) PSDs of simulated signals in (C). Note power law decays in current-PSDs that
begin at different frequencies. (E) Increasing E:I ratio from 1:6 to 1:2 causes a rotation, producing
a flatter PSD. (F) E:I ratio is positively correlated with PSD slope between 30-50 Hz. (G) Positive
rank correlations between E:I ratio and PSD slope diminish with increasing frequency of fitting
window, up to 100 Hz.

Depth-varying synapse density in rat CA1

To test the relationship between E:I ratio and PSD slope empirically, we first take advan-

tage of the fact that excitatory and inhibitory synapse densities vary along the pyramidal dendrites

in the CA1 region of the rat hippocampus (Megías et al., 2001). Given the results of the above
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modeling experiment, we ask: can changes in the ratio of excitatory to inhibitory synapse density

be captured by changes in PSD slope, measured along the depth of CA1? Shank recordings

are obtained from CRCNS data portal (Mizuseki et al., 2009), sampling LFP at evenly spaced

electrodes across a depth of 280 µm centered (post hoc, see Methods) on the pyramidal cell layer

in CA1 (Fig. 2.2A). PSDs are computed using data from entire recording sessions of open field

foraging (Fig. 2.2B). PSD slopes are then fitted between 30-50 Hz to arrive at a slope profile

that varied across depth (Fig. 2.2C). To compute E:I ratio, we adapt synapse density values from

(Megías et al., 2001) and spatially smooth it to produce data points at equivalent LFP electrode

depths (Fig. 2.2D).

We find that PSD slope across depth is significantly correlated with the AMPA to GABAA

synapse ratio (Spearman’s ρ = 0.23, p < 10-5), corroborating our a priori simulation results (Fig.

2.2E). Interestingly, inhibitory synapse density alone correlates more strongly with PSD slope

(Spearman’s ρ = -0.41, p < 10-5; Fig. 2.2F). To further dissect the covariation among the predictor

variables, we create multivariate linear models regressing for slope, using every combination

of excitatory density, inhibitory density, and E:I density ratio (Table 2.2). We find that each

variable alone produces models that are significantly better than null (constant-only) and with

coefficients in the direction expected (positive for E, E:I ratio; negative for I), where the full

model with all 3 predictors achieves the highest adjusted R2. However, inhibitory density in any

combination produces the largest increase in adjusted R2. To assess whether model differences

are significant, we performed bootstrap validation by building a distribution of adjusted R2 values

from subsampling 25 random samples of the data 500 times, then comparing the distributions

with paired-sample t-tests. We find that, while I improves model prediction the most, adding

either E or E:I ratio significantly improves adjusted R2 compared to I-only (I < [I & E], p =

0.0003; I < [I & E:I], p = 0.005). Thus, we find that PSD slope significantly correlates with E:I

ratio in the rat CA1, as measured by synapse density, though the effect is strongly driven by

changes in inhibition.

78



Frequency (Hz)
100 101 102

Po
w

er

C
A1

 D
ep

th

Synapse Density (#/um)
2 0 2

D
ep

th
 (u

m
)

-120

-80

-40

0

40

80

120 Excitatory
Inhibitory

A B

D E F

log10EI ratio
-2 0 2

Sl
op

e

-3

-2

-1
Spearman's Rho = 0.232, p = 0.000

Inhibitory Density (#/um)
0 0.5 1 1.5 2

Sl
op

e

-3

-2

-1
Spearman's Rho = -0.414, p = 0.00000

ρ = 0.23
p < 10-5

ρ = -0.41
p < 10-5

1 10 100
Frequency (Hz)

Po
w

er

C
A1

 D
ep

th

Slope
-3.5 -3 -2.5 -2 -1.5 -1

D
ep

th
 (u

m
)

-100

0

100

C

-3.5 -1
Slope

-3 -2.5 -2 -1.5

100

0

-100

D
ep

th
 (μ

m
)

2
Synapse Density (#/μm)

0 2

120

0

-120

D
ep

th
 (μ

m
)

-2
log10 E:I Ratio

0 2

-1

-2

-3

Sl
op

e

-1

-2

-3

Sl
op

e
0 1 2

Inhibitory Density (#/μm)

Figure 2.2: LFP-PSD slope varies with E:I synapse density ratio in rat CA1. (A) Example shank
spanning across CA1 (rad: stratum radiatum; pyr: stratum pyramidale; or: stratum oriens; adapted
from (Mizuseki et al., 2011)). (B) Example PSDs computed from electrodes along one recording
shank. (C) Aggregate slope profile across depth, centered to the middle of pyramidal layer (0 µm)
(horizontal bars denote standard deviation). (D) Excitatory (AMPA) and inhibitory (GABAA)
synapse density varies across CA1 depth. (E and F) LFP-PSD slope correlates positively with E:I
synapse density ratio (E) and negatively with GABAA density (F) (vertical bars denote standard
deviation).

Theta-modulated cycles of excitation & inhibition

If LFP-PSD slope indeed tracks changes in the balance between excitation and inhibition,

it should not only do so statically across space, but dynamically across time as well. Theta

oscillation in the rat hippocampus reflects periodic bouts of excitation and inhibition (Buzsáki,
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Table 2.2: Multivariate Linear Model Coefficients and R2 for Slope vs. E, I, and E:I Ratio. N/A
indicates exclusion of predictor in model.

Coefficients R2
Model Constant E I E:I ordinary adjusted
E -1.985 0.085 N/A N/A 0.027 0.026
I -1.589 N/A -0.451 N/A 0.223 0.222
E:I -1.861 N/A N/A 0.116 0.073 0.072
E & I -1.460 -0.089 -0.548 N/A 0.243 0.241
E & E:I -1.727 -0.128 N/A 0.208 0.090 0.088
I & E:I -1.534 N/A -0.590 -0.084 0.240 0.238
E, I & E:I -1.474 -0.065 -0.575 -0.032 0.244 0.241

2002). Therefore, we posit that PSD slope would be steeper during the inhibitory phase of theta,

and flatter during the excitatory phase. To test this, we use the same CA1 dataset as above, and

divide each LFP recording into temporal segments of peak and trough based on theta phase (Fig.

2.3A; see Methods). Fast Fourier Transforms (FFTs) are computed from these short segments

and averaged, showing distinctive slope differences (Fig. 2.3B). We find that, across all channels,

PSD slope (30-50 Hz) during theta peaks were significantly more negative (steeper) than during

theta troughs (paired t-test, p < 10-5; Fig. 2.3C and 2.3D). On a single channel basis, we fit linear

slopes to each short segment FFT, and found 844 out of 946 channels with significantly flatter

slopes during troughs (2-sample t-test, p < 10-5). From this we infer that theta troughs correspond

to periods of excitation, which agrees with the biophysical view that negativity in the hippocampal

LFP is due to depolarization of membrane potential (Buzsáki et al., 2012). Additionally, we

observe that high-frequency (140-230 Hz) power – a surrogate for spiking activity and ripples in

the hippocampus (Schomburg et al., 2012) – is higher during theta troughs than peaks, further

indicating the correspondence between LFP troughs and windows of excitation (Fig. 2.3E).

Taken together, we find evidence that PSD slope can dynamically track periods of excitation and

inhibition facilitated by theta oscillations in the rat hippocampus.
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Figure 2.3: PSD slope tracks theta-modulated changes in E:I balance. (A) Schematic of how
LFP segments are divided and binned based on theta phase. (B) Example PSD of a single
channel over the entire recording (black, notch filter applied in beta range), and averages across
all troughs (blue) and peaks (red) only. (C) Distribution of slope values shifts rightward (more
positive) during theta troughs. Inset: distribution of difference in slope (trough minus peak) lies
significantly above 0 (vertical red line). (D) Individual-channel comparison of slopes during
theta troughs vs. peaks, each channel represented by a pair of connected dots showing nearly
universally more negative slope during peaks compared to troughs (* p < 10-5). (E) Distribution
of difference (trough minus peak) in high frequency activity (HFA, 140-230 Hz) in all channels
lies significantly above 0 (vertical red line), indicating an increase in high gamma power from
peak to trough.

Propofol-induced increase in GABAA-mediated inhibition

Finally, having shown correlative evidence supporting the hypothesis, we aim to further

test the simulation predictions through causal manipulations. Propofol is a general anesthetic
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that positively modulates the effect of GABA at GABAA receptors (Concas et al., 1991), ef-

fectively decreasing the global E:I ratio. Thus, we query another openly available dataset

(http://www.neurotycho.org), in which electrocorticogram (ECoG) from macaques was recorded

throughout sedation, to investigate whether ECoG-PSD slope reflects a decrease in E:I ratio

induced via pharmacological manipulation (Yanagawa et al., 2013). PSDs are computed for all

128 recording channels per session, for awake resting and anesthetized conditions (Fig. 2.4A).

We observe a significant decrease in PSD slope after onset of anesthesia for all 4 recording

sessions (paired t-test, all p < 10-5, Fig. 2.4B). The slope decrease is strongest in frontal and

temporal electrodes (Fig. 2.4C), consistent with previous neuroimaging studies spatially locating

propofol’s region of effect (Zhang et al., 2010). Interestingly, electrodes in the precuneus region

show increases in PSD slope during anesthesia instead, suggesting a gain of activity, perhaps

due to its situation as a critical, core node within the default mode network (Utevsky et al.,

2014). Finally, to calculate temporally precise demarcations of consciousness state changes, we

estimate PSD slope in a time-resolved fashion by fitting over 1-second long sliding FFTs across

the entire recording session. We find that PSD slope dynamically tracks the stability of brain state

during awake resting, followed by a rapid push towards inhibition after injection that is consistent

with propofol’s time of onset (15-30 seconds), as well as the slow rebalancing during recovery

from anesthesia (Fig. 2.4D). Unexpectedly, we also observe a rapid increase in slope, back to

resting-state values, following the initial gain in inhibition, suggesting a global re-normalization

process. Overall, we demonstrate that ECoG-PSD slope dynamically tracks propofol-induced

gain in inhibition consistently across brain regions and time.
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Figure 2.4: ECoG-PSD slope tracks propofol-induced global inhibition. (A) Average PSD across
all channels during resting (black) and anesthetized (red) show distinct slope differences beyond
30 Hz. (B) Significant slope decrease is observed during anesthesia (pair t-test, * p < 10-5). (C)
Slope decrease is observed across most of cortex, most prominently in the frontal and temporal
areas. Slope increase is observed exclusively in the precuneus. (D) Time-resolved estimate of
PSD slope tracks, with fine temporal resolution, changes in brain state from awake to anesthetized
(Anes), and as well as a slow recovery to baseline rest levels (marked by dashed blue line). Grey,
unsmoothed; red, 15s smoothing window applied.

2.4 Discussion

Guided by predictions from our computational modeling results, our analyses of existing

datasets from two mammalian species with different experimental manipulations and recording

equipment demonstrate that information about local E:I ratio can be captured from the spectral
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representation of electrophysiological signals. Specifically, we show that LFP-PSD slope cor-

relates with both anatomical E:I ratio—represented by changes in synaptic density ratio across

CA1 layers—and dynamic E:I ratio as modulated by theta oscillation in the rat hippocampus. In

addition, ECoG-PSD slope tracks the increase of inhibition in non-human primate brains induced

by propofol, across brain regions and time. Evidence that spiking can be partially extracted from

the broadband (2-250 Hz) or high gamma (>80 Hz) spectral power of meso-/macro-scale neural

recordings (LFP, ECoG) provided an important link between local neuronal activity and the

LFP, opening numerous avenues of research (Manning et al., 2009; Miller et al., 2009; Mukamel

et al., 2005). In contrast to the copious literature regarding broadband/high gamma, much of the

work on E:I balance has been limited to intracellular recordings, methods with limited temporal

resolution, multiple single-unit recordings, or optogenetic manipulations. Given the broad and

important role that E:I balance plays in neural computation, information transfer, and oscillatory

and homeostatic mechanisms, the inability to easily measure E:I parameters at a large scale has

hindered basic and clinical research. To this end, we develop a simple metric that can be applied

at different intracranial recording scales, which can potentially be extended to extracranial EEG

recordings, with profound implications for clinical and basic science research.

Limitations

There are several caveats in this study worth noting. Most notably is the underlying

assumption that LFP and ECoG are solely composed of AMPA and GABAA synaptic currents. In

reality, LFP reflects the integration of all ionic currents, including action potentials (Schomburg

et al., 2012) – which shift the broadband/high gamma frequencies (Manning et al., 2009; Miller

et al., 2009; Mukamel et al., 2005) – and slow glial currents (Buzsáki et al., 2012). The computa-

tional model also makes several assumptions, such as homogeneous-rate spiking and constant

PSC waveforms, as well as excluding biophysical details like 3D arrangement of the spiking

population. These factors will certainly influence the overall shape of the PSD, although it was
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shown that a linear combination of excitatory and inhibitory synaptic currents best approximates

neuronal networks with 3D cellular morphology (Mazzoni et al., 2015). Additionally, such

models have been used to capture the aforementioned broadband/high gamma relationship to

spiking activity (Miller et al., 2009), a phenomenon that is also reproduced in our model through

an overall (and equivalent) increase in firing rate from both excitatory and inhibitory populations.

Furthermore, although our computational model makes predictions that EI balance can

be captured from the 1/f slope, we emphasize that our model assumes a linear independent

summation of E and I currents that do not account for the fast-coupling or recurrent nature of

cortical circuits. This assumption rests on the high-conductance state of cortical circuits over

long recording lengths, effectively washing out stimulus-specific frequency response. So while

our simple slope-fitting model captures significant variance in E:I ratio, the fact that the feedback

engagement of E and I makes these two contributions inextricably linked suggests that more

sophisticated models would perform better when the superposition assumption does not satisfy. In

particular, previous works have shown that the amplitude of the power spectrum depends critically

on this interaction in similar frequency ranges used in our analyses to infer E:I from the spectral

slope, when considering time-inhomogeneous stimuli (Brunel & Wang, 2003; Mazzoni et al.,

2008). Some methods have been proposed to estimate network parameters (including E:I ratio)

when recurrent E:I interactions are taken into account (Barbieri et al., 2014). These methods are

more complicated than, but complementary to, the model we propose, and they may be preferable

when considering non-stationary, stimulus-evoked responses. Finally, because non-neural sources

such as the amplifier, reference scheme, and ambient noise can affect spectral slope, slope-inferred

E:I ratio should only be interpreted in the context of a comparative experimental design in which

the relative E:I ratio can be interrogated in response to experimental manipulations or population

differences, rather than ascribing meaning to the exact value of the slope itself. In particular, it

has been shown that different referencing schemes, such as bipolar vs. common-average, have

profound effects on the measured PSD slope (Shirhatti et al., 2016). In addition, we observe that
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PSD slope of cortical ECoG is much more negative than that of CA1 LFP recordings, which, in

turn, is lower than slopes produced by our LFP model, suggesting that anatomical differences and

dendritic integration process all contribute to the measured slope (Lindén et al., 2010; Pettersen

et al., 2014).

Power Law (1/f) Decay in Neural Recordings

Power law exponent (slope) changes of the PSD (“rotation”) have recently been observed

in several empirical studies, linking it to changes in global awake and sleep states (He et al., 2010),

age-related cognitive decline (Voytek & Knight, 2015; Voytek et al., 2015; Waschke et al., 2017)

and visuomotor task-related activation (Podvalny et al., 2015). The 1/f power law nature of neural

recordings has been interpreted within a self-organized criticality framework (Bak et al., 1987; He

et al., 2010), with general anesthesia argued to alter the criticality of self-organized brain networks

(Alonso et al., 2014). It has been shown, however, that power law statistics do not imply criticality

in neuronal networks (Touboul & Destexhe, 2010), and the finding that neuronal activity exhibit

power law statistics at all has been questioned (Bedard et al., 2006). Furthermore, many previous

reports ignore or overlook the fact that PSD of neural recordings are not 1/f at all frequencies and

do not have a constant power law exponent – both requirements in the self-organized criticality

framework. Instead, LFP and ECoG PSDs often have relatively constant spectral power at low

frequencies between 1-10 Hz, as well as different power law exponents at different frequencies.

For example, ultra-low frequency region (<1 Hz) was posited to exhibit 1/f decay due to recurrent

network activity (Chaudhuri et al., 2017), and power law in the very high frequency (>200 Hz)

was shown to be a result of stochastic fluctuations in ion channels (Diba et al., 2004).

Our model and results reconcile the 1/f and low-frequency plateau observation by the

simple fact that the spectral representation of synaptic currents (Lorentzian) takes on that shape

(Fig. 2.1D), as others have noted before (Destexhe & Rudolph, 2004). In fact, previous works

have modeled the Lorentzian form as due to the network propagation time constant of a recurrent
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excitatory population (Freeman & Zhai, 2009) and excitatory synaptic time constants coupled

with dendritic filtering (Miller et al., 2009). However, recent evidence suggests that synaptic

inhibition also plays a significant role in shaping the LFP time series (Telenczuk et al., 2017).

As such, we infer that the balance between excitation and inhibition could be extracted from the

extracellular field potential, though not from the polarity of the time series signal itself. Hence,

we propose that slope changes in a particular frequency region (30-70 Hz) correspond to changes

in E:I balance, while making no claims about other frequency regions, and our multivariate model

in the CA1 analysis reveals that both inhibition alone and E:I ratio predict spectral slope better

than excitation alone. Altogether, it follows that different processes may give rise to power law

phenomenon at different temporal scales, hence different frequency ranges (Chaudhuri et al.,

2017). Our observations here do not negate the criticality perspective, but reframes it in E:I terms,

wherein constant E:I balancing is crucial for maintaining neuronal excitability at a critical state

(Xue et al., 2014).

In summary, our results challenge the view that the relative contributions of EPSCs

and IPSCs to electrophysiological signals cannot be readily inferred (Yizhar et al., 2011). We

show that this limitation can be overcome using relatively simple metrics derived from meso-

and macro-scale neural recordings, and that it can be easily applied retrospectively to existing

data, opening new domains of inquiry and allowing for reanalyses within an E:I framework.

Furthermore, our results provide insights into several ongoing research domains, such as possible

contributors to the 1/f power law phenomenon often observed in field potential power spectra. By

providing a new way for decoding the physiological information of the aggregate field potential,

we can query brain states in novel ways, helping close the gap between cellular and cognitive

neuroscience and increasing our ability to relate fundamental brain processes to behaviour and

cognition as a result.
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Chapter 3

Neuronal timescales are functionally

dynamic and shaped by cortical

microarchitecture

Abstract

Complex cognitive functions such as working memory and decision-making require

information maintenance over seconds to years, from transient sensory stimuli to long-term

contextual cues. While theoretical accounts predict the emergence of a corresponding hierarchy

of neuronal timescales, direct electrophysiological evidence across the human cortex is lacking.

Here, we infer neuronal timescales from invasive intracranial recordings. Timescales increase

along the principal sensorimotor-to-association axis across the entire human cortex, and scale

with single-unit timescales within macaques. Cortex-wide transcriptomic analysis shows direct

alignment between timescales and expression of excitation- and inhibition-related genes, as well

as genes specific to voltage-gated transmembrane ion transporters. Finally, neuronal timescales are

functionally dynamic: prefrontal cortex timescales expand during working memory maintenance
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and predict individual performance, while cortex-wide timescales compress with aging. Thus,

neuronal timescales follow cytoarchitectonic gradients across the human cortex, and are relevant

for cognition in both short- and long-terms, bridging microcircuit physiology with macroscale

dynamics and behavior.

3.1 Introduction

Human brain regions are broadly specialized for different aspects of behavior and cog-

nition, and the temporal dynamics of neuronal populations across the cortex are thought to be

an intrinsic property (i.e., neuronal timescale) that enables the representation of information

over multiple durations in a hierarchically embedded environment (Kiebel et al., 2008). For

example, primary sensory neurons are tightly coupled to changes in the environment, firing

rapidly to the onset and removal of a stimulus, and showing characteristically short intrinsic

timescales (Ogawa & Komatsu, 2010; Runyan et al., 2017). In contrast, neurons in cortical asso-

ciation (or transmodal) regions, such as the prefrontal cortex (PFC), can sustain their activity for

many seconds when a person is engaged in working memory (Zylberberg & Strowbridge, 2017),

decision-making (Gold & Shadlen, 2007), and hierarchical reasoning (Sarafyazd & Jazayeri,

2019). This persistent activity in the absence of immediate sensory stimuli reflects longer neuronal

timescales, which is thought to result from neural attractor states (Wang, 2002; Wimmer et al.,

2014) shaped by NMDA-mediated recurrent excitation and fast feedback inhibition (Wang, 1999,

2008), with contributions from other synaptic and cell-intrinsic properties (Duarte & Morrison,

2019; Gjorgjieva et al., 2016). How connectivity and various cellular properties combine to shape

neuronal dynamics across the cortex remains an open question.

Anatomical connectivity measures based on tract tracing data, such as laminar feedforward

vs. feedback projection patterns, have classically defined a hierarchical organization of the cortex

(Felleman & Van Essen, 1991; Hilgetag & Goulas, 2020; Vezoli et al., 2020). Recent studies have
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also shown that variations in many microarchitectural features follow continuous and coinciding

gradients along a sensory-to-association axis across the cortex, including cortical thickness, cell

density, and distribution of excitatory and inhibitory neurons (Huntenburg et al., 2018; Wang,

2020). In particular, grey matter myelination (Glasser & Van Essen, 2011)—a non-invasive proxy

of anatomical hierarchy consistent with laminar projection data—varies with the expression of

genes related to microcircuit function in the human brain, such as NMDA receptor and inhibitory

cell-type marker genes (Burt et al., 2018). Functionally, specialization of the human cortex,

as well as structural and functional connectivity (Margulies et al., 2016), also follow similar

macroscopic gradients. Moreover, in addition to the broad differentiation between sensory and

association cortices, there is evidence for an even finer hierarchical organization within the

frontal cortex (Sarafyazd & Jazayeri, 2019). For example, the anterior-most parts of the PFC are

responsible for long timescale goal-planning behavior (Badre & D’Esposito, 2009; Voytek et al.,

2015a), while healthy aging is associated with a shift in these gradients such that older adults

become more reliant on higher-level association regions to compensate for altered lower-level

cortical functioning (Davis et al., 2008).

Despite convergent observations of cortical gradients in structural features and cognitive

specialization, there is no direct evidence for a similar gradient of neuronal timescales across the

human cortex. Such a gradient of neuronal dynamics is predicted to be a natural consequence of

macroscopic variations in synaptic connectivity and microarchitectural features (Chaudhuri et al.,

2015; Duarte et al., 2017; Huang & Doiron, 2017; Huntenburg et al., 2018; Wang, 2020), and

would be a primary candidate for how functional specialization emerges as a result of hierarchical

temporal processing (Kiebel et al., 2008). Single-unit recordings in rodents and non-human

primates demonstrated a hierarchy of timescales that increase, or lengthen, progressively along a

posterior-to-anterior axis (Dotson et al., 2018; Murray et al., 2014; Runyan et al., 2017; Wasmuht

et al., 2018), while intracranial recordings and functional neuroimaging data collected during

perceptual and cognitive tasks suggest likewise in humans (Baldassano et al., 2017; Honey et al.,
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2012; Lerner et al., 2011; Watanabe et al., 2019). However, these data are either sparsely sampled

across the cortex or do not measure neuronal activity at the cellular and synaptic level directly,

prohibiting the full construction of an electrophysiological timescale gradient across the human

cortex. As a result, while whole-cortex data of transcriptomic and anatomical variations exist,

we cannot take advantage of them to dissect the contributions of synaptic, cellular, and circuit

connectivity in shaping fast neuronal timescales, nor ask whether regional timescales are dynamic

and relevant for human cognition.

Here, we combine several publicly available datasets to infer neuronal timescales from

invasive human electrocorticography (ECoG) recordings and relate them to whole-cortex tran-

scriptomic and anatomical data, as well as probe their functional relevance during behavior

(Figure 3.1A for schematic of study; Table 3.1 and 3.2 for dataset information). Unless otherwise

specified, (neuronal) timescale in the following sections refers to ECoG-derived timescales,

which are more reflective of fast synaptic and transmembrane current timescales than single-unit

or population spiking timescales (Figure 3.1A, left box), though we demonstrate in macaques

a close correspondence between the two. In humans, neuronal timescales increase along the

principal sensorimotor-to-association axis across the cortex and align with macroscopic gradients

of grey matter myelination (T1w/T2w ratio) and synaptic receptor and ion channel gene expres-

sion. Finally, we find that human prefrontal cortex timescales expand during working memory

maintenance and predict individual performance, while cortex-wide timescales compress with

aging. Thus, neuronal timescales follow cytoarchitectonic gradients across the human cortex, and

are relevant for cognition in both short- and long-terms, bridging microcircuit physiology with

macroscale dynamics and behavior.
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Figure 1. Study schematic & simulation
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Figure 3.1: Schematic of study and timescale inference technique. (A) in this study, we infer
neuronal timescales from intracranial field potential recordings, which reflect integrated synaptic
and transmembrane current fluctuations over large neural populations (Buzsáki et al., 2012).
Combining multiple open-access datasets (Table 3.1), we link timescales to known human
anatomical hierarchy, dissect its cellular and physiological basis via transcriptomic analysis, and
demonstrate its functional modulation during behavior and through aging. (B) simulated time
series, and their (C) autocorrelation functions (ACF), with increasing (longer) decay time constant,
τ (which neuronal timescale is defined to be). (D) example macaque ECoG power spectral density
(PSD) showing the aperiodic component fit (red dashed), and the “knee frequency” at which
power drops off ( fk, red circle; insets: time series and ACF). (E) estimation of timescale from
PSDs of simulated time series in (B), where the knee frequency, fk, is converted to timescale,
τ, via the embedded equation (inset: correlation between ground truth and estimated timescale
values).
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3.2 Results

Neuronal timescale can be inferred from the frequency domain

Neural time series often exhibit time-lagged correlation (i.e., autocorrelation), where

future values are partially predictable from past values, and predictability decreases with in-

creasing time lags. For demonstration, we simulate the aperiodic (non-rhythmic) component of

ECoG recordings by convolving Poisson population spikes with exponentially-decaying synaptic

kernels with varying decay constant (Figure 3.1B). Empirically, the degree of self-similarity

is characterized by the autocorrelation function (ACF), and “timescale” is defined as the time

constant (τ) of an exponential decay function (e
−t
τ ) fit to the ACF, i.e., the time it takes for the

autocorrelation to decrease by a factor of e (Figure 3.1C).

Equivalently, we can estimate timescale in the frequency domain from the power spectral

density (PSD). PSDs of neural time series often follow a Lorentzian function of the form 1
f 2
k + f 2 ,

where power is approximately constant until the “knee frequency” ( fk, Figure 3.1D), then decays

following a power law. This approach is similar to the one presented in (Chaudhuri et al., 2017),

but here we further allow the power law exponent (fixed at 2 in the equation above) to be a free

parameter representing variable scale-free activity (He et al., 2010; Miller et al., 2009; Podvalny

et al., 2015; Voytek et al., 2015b). We also simultaneously parameterize oscillatory components

as Gaussians peaks, allowing us to remove their effect on the power spectrum, providing more

accurate estimates of the knee frequency. From the knee frequency of the aperiodic component,

neural timescale (decay constant) can then be computed exactly as τ = 1
2π fk

.

Compared to fitting exponential decay functions in the time domain, e.g., (Murray et al.,

2014)—which can be biased even without the presence of additional components (Zeraati et al.,

2020)—the frequency domain approach is advantageous when a variable power law exponent and

strong oscillatory components are present, as is often the case for neural signals (example of real

data in Figure 3.1D). While the oscillatory component can corrupt naive measurement of τ as time
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for the ACF to reach 1/e (Figure 3.1D, inset), it can be more easily accounted for and removed in

the frequency domain as Gaussian-like peaks. This is especially important considering neural

oscillations with non-stationary frequencies. For example, a broad peak in the power spectrum

(e.g., ∼10Hz in bandwidth in Figure 3.1D) represents drifts in the oscillation frequency over time,

which is easily accounted for with a single Gaussian, but requires multiple cosine terms to capture

well in the autocorrelation. Therefore, in this study, we apply spectral parameterization to extract

timescales from intracranial recordings (Donoghue et al., 2020). We validate this approach on

PSDs computed from simulated neural time series and show that the extracted timescales closely

match their ground-truth values (Figure 3.1E).

Timescales follow anatomical hierarchy and are 10x faster than spiking

timescales

Applying this technique, we infer a continuous gradient of neuronal timescales across the

human cortex by analyzing a large dataset of human intracranial (ECoG) recordings of task-free

brain activity (Frauscher et al., 2018a). The MNI-iEEG dataset contains 1 minute of resting state

data across 1772 channels from 106 patients (13-62 years old, 48 females) with variable coverages,

recorded using either surface strip/grid or stereoEEG electrodes, and cleaned of visible artifacts.

Figure 3.2A shows example data traces along the cortical hierarchy with increasing timescales

estimated from their PSDs (Figure 3.2B; circles denote fitted knee frequency). Timescales

from individual channels were extracted and projected from MNI coordinates onto the left

hemisphere of HCP-MMP1.0 surface parcellation (Glasser et al., 2016) for each patient using a

Gaussian-weighted mask centered on each electrode. While coverage is sparse and idiosyncratic

in individual patients, it does not vary as a function of age, and when pooling across the entire

population, 178 of 180 parcels have at least one patient with an electrode within 4mm (Figure

3.5A-F).
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Figure 2. Timescale vs. anatomical hierarchy
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Figure 3.2: Timescale increases along the anatomical hierarchy in humans and macaques. (A)
example time series from 5 electrodes along the human cortical hierarchy (M1: primary motor
cortex; SMC: supplementary motor cortex; OFC: orbitofrontal cortex; ACC: anterior cingulate
cortex; MTL: medial temporal lobe), and (B) their corresponding PSDs computed over 1 minute.
Circle and dashed line indicate the knee frequency for each PSD, derived from the aperiodic
component fits (inset). Data: MNI-iEEG database, N = 106 participants. (C) human cortical
timescale gradient (left) falls predominantly along the rostrocaudal axis, similar to T1w/T2w ratio
(right; z-scored, in units of standard deviation). Colored dots show electrode locations of example
data. (D) neuronal timescales are negatively correlated with cortical T1w/T2w, thus increasing
along the anatomical hierarchy from sensory to association regions (Spearman correlation; p-value
corrected for spatial autocorrelation, Figure 3.6A-C). (E) Example PSDs from macaque ECoG
recordings, similar to (B) (LIP: lateral intraparietal cortex; LPFC: lateral prefrontal cortex; S1 &
S2: primary and secondary somatosensory cortex). PSDs are averaged over electrodes within
each region (inset of (F)). Data: Neurotycho, N = 8 sessions from 2 animals. (F) macaque ECoG
timescales track published single-unit spiking timescales (Murray et al., 2014) in corresponding
regions (error bars represent mean±s.e.m). Inset: ECoG electrode map of one animal and selected
electrodes for comparison. (G) ECoG-derived timescales are consistently correlated to (left), and
∼10 times faster than (right), single-unit timescales across individual sessions. Hollow markers:
individual sessions; shapes: animals; circles: grand average from (F).
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Across the human cortex, timescales of fast electrophysiological dynamics (∼10-50 ms)

predominantly follow a rostrocaudal gradient (Figure 3.2C, circles denote location of example

data from 2A). Consistent with numerous accounts of a principal cortical axis spanning from

primary sensory to association regions (Hilgetag & Goulas, 2020; Margulies et al., 2016; Wang,

2020), timescales are shorter in sensorimotor and early visual areas, and longer in association

regions, especially cingulate, ventral/medial frontal, and medial temporal regions (Figure 3.5G

shows further pooling into 21 labeled macro-regions). We then compare the timescale gradient to

the average T1w/T2w map from the Human Connectome Project, which captures grey matter

myelination and indexes the proportion of feedforward vs. feedback connections between cortical

regions, thus acting as a non-invasive proxy of connectivity-based anatomical hierarchy (Glasser

& Van Essen, 2011; Burt et al., 2018). We find that neuronal timescales are negatively correlated

with T1w/T2w across the entire cortex (Figure 3.2D, ρ = -0.47, p < 0.001; corrected for spatial

autocorrelation (SA), see Materials and Methods and Figure 3.6A-C for a comparison of correction

methods), such that timescales are shorter in more heavily myelinated (i.e., lower-level, sensory)

regions. Timescales are also positively correlated with cortical thickness (Figure 3.7, τ = 0.37, p =

0.035)—another index of cortical hierarchy that is itself anti-correlated with T1w/T2w. Thus, we

observe that neuronal timescales lengthen along the human cortical hierarchy, from sensorimotor

to association regions.

While surface ECoG recordings offer much broader spatial coverage than extracellular

single-unit recordings, they are fundamentally different signals: ECoG and field potentials largely

reflect integrated synaptic and other transmembrane currents across many neuronal and glial cells,

rather than putative action potentials from single neurons (Buzsáki et al., 2012) (Figure 3.1A,

yellow box). Considering this, we ask whether timescales measured from ECoG in this study

(τECoG) are related to single-unit spiking timescales along the cortical hierarchy (τspiking). To test

this, we extract neuronal timescales from task-free ECoG recordings in macaques (Nagasaka et al.,

2011) and compare them to a separate dataset of single-unit spiking timescales from a different
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group of macaques (Murray et al., 2014) (see Figure 3.8 for electrode locations). Consistent

with τspiking estimates (Murray et al., 2014; Wasmuht et al., 2018), τECoG also increase along the

macaque cortical hierarchy. While there is a strong correspondence between spiking and ECoG

timescales (Figure 3.2F; ρ = 0.96, p < 0.001)—measured from independent datasets—across

the macaque cortex, τECoG are ∼10 times faster than τspiking and are conserved across individual

sessions (Figure 3.2G). This suggests that neuronal spiking and transmembrane currents have

distinct but related timescales of fluctuations, and that both are hierarchically organized along the

primate cortex.

Synaptic and ion channel genes shape timescales of neuronal dynamics

Next, we identify potential cellular and synaptic mechanisms underlying timescale vari-

ations across the human cortex. Theoretical accounts posit that NMDA-mediated recurrent

excitation coupled with fast inhibition (Chaudhuri et al., 2015; Wang, 1999, 2008), as well as

cell-intrinsic properties (Duarte & Morrison, 2019; Gjorgjieva et al., 2016; Koch et al., 1996), are

crucial for shaping neuronal timescales. While in vitro and in vivo studies in model organisms

(van Vugt et al., 2020; Wang et al., 2013) can test these hypotheses at the single-neuron level,

causal manipulation and large-scale recording of neuronal networks embedded in the human

brain is severely limited. Here, we apply an approach analogous to multimodal single-cell profil-

ing (Bomkamp et al., 2019) and examine the transcriptomic basis of neuronal dynamics at the

macroscale.

Leveraging whole-cortex interpolation of the Allen Human Brain Atlas bulk mRNA

expression (Hawrylycz et al., 2012; Gryglewski et al., 2018), we project voxel-wise expression

maps onto the HCP-MMP1.0 surface parcellation, and find that the neuronal timescale gradient

overlaps with the dominant axis of gene expression (i.e., 1st principal component of 2429 brain-

related genes) across the human cortex (Figure 3.3A, ρ = -0.60, p < 0.001; see Figure 3.9 for

similar results with all 18114 genes). Consistent with theoretical predictions (Figure 3.3B),
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timescales significantly correlate with the expression of genes encoding for NMDA (GRIN2B)

and GABA-A (GABRA3) receptor subunits, voltage-gated sodium (SCN1A) and potassium

(KCNA3) ion channel subunits, as well as inhibitory cell-type markers (parvalbumin, PVALB),

and genes previously identified to be associated with single-neuron membrane time constants

(PRR5) (Bomkamp et al., 2019) (all Spearman correlations corrected for spatial autocorrelation

in gradients).

More specifically, in vitro electrophysiological studies have shown that, for example,

increased expression of receptor subunit 2B extends the NMDA current time course (Flint et al.,

1997), while 2A expression shortens it (Monyer et al., 1994). Similarly, the GABA-A receptor

time constant lengthens with increasing a3:a1 subunit ratio (Eyre et al., 2012). We show that

these relationships are recapitulated at the macroscale, where neuronal timescales positively

correlate with GRIN2B and GABRA3 expression, and negatively correlate with GRIN2A and

GABRA1 (Figure 3.3C). These results demonstrate that timescales of neural dynamics depend on

specific receptor subunit combinations with different (de)activation timescales (Duarte et al., 2017;

Gjorgjieva et al., 2016), in addition to broad excitation-inhibition interactions (Gao et al., 2017;

Wang, 2002, 2020). Notably, almost all genes related to voltage-gated sodium and potassium ion

channel alpha-subunits—the main functional subunits—are correlated with timescale, while all

inhibitory cell-type markers except parvalbumin have strong positive associations with timescale

(Figure 3.3C and 3.10).
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Figure 3.3: Timescale gradient is linked to expression of genes related to synaptic receptors
and transmembrane ion channels across the human cortex. (A) timescale gradient follows the
dominant axis of gene expression variation across the cortex (z-scored PC1 of 2429 brain-specific
genes, arbitrary direction). (B) timescale gradient is significantly correlated with expression of
genes known to alter synaptic and neuronal membrane time constants, as well as inhibitory cell-
type markers, but (C) members within a gene family (e.g., NMDA receptor subunits) can be both
positively and negatively associated with timescales, consistent with predictions from in-vitro
studies. (D) macroscale timescale-transcriptomic correlation captures association between RNA-
sequenced expression of the same genes and single-cell timescale properties fit to patch clamp
data from two studies, and the correspondence improves for genes (separated by quintiles) that are
more strongly correlated with timescale (solid: N = 170 (Tripathy et al., 2017), dashed: N = 4168
genes (Bomkamp et al., 2019); horizontal lines: correlation across all genes from the two studies,
ρ = 0.36 and 0.25, p < 0.001 for both). (E) T1w/T2w gradient is regressed out from timescale and
gene expression gradients, and a partial least squares (PLS) model is fit to the residual maps. Genes
with significant PLS weights (filled blue boxes) compared to SA-preserved null distributions
are submitted for gene ontology enrichment analysis (GOEA), returning a set of significant GO
terms that represent functional gene clusters (filled green boxes). (F) enriched genes are primarily
linked to potassium and chloride transmembrane transporters, and GABA-ergic synapses; genes
specifically with strong negative associations further over-represent transmembrane ion exchange
mechanisms, especially voltage-gated potassium and cation transporters. Branches indicate GO
items that share higher-level (parent) items, e.g., voltage-gated cation channel activity is a child
of cation channel activity in the Molecular Functions (MF) ontology, and both are significantly
associated with timescale. Color of lines indicate curated ontology (BP - Biological Process, CC -
Cellular Components, or MF). Dotted, dashed, and solid lines correspond to analysis performed
using all genes or only those with positive or negative PLS weights. Spatial correlation p-values
in (A-C) are corrected for spatial autocorrelation (see Materials and Methods; asterisks in (B,D)
indicate p < 0.05, 0.01, 0.005, and 0.001 respectively; filled circles in (C,D) indicate p < 0.05).
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Figure 3. Transcriptomic basis of timescale
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We further test whether single-cell timescale-transcriptomic associations are captured at

the macroscale as follows: for a given gene, we can measure how strongly its expression correlates

with membrane time constant parameters at the single-cell level using patch-clamp and RNA

sequencing (scRNASeq) data (Tripathy et al., 2017; Bomkamp et al., 2019). Analogously, we can

measure its macroscopic transcriptomic-timescale correlation using the cortical gradients above.

If the association between the expression of this gene and neuronal timescale is preserved at both

levels, then the correlation across cells at the microscale should be similar to the correlation across

cortical regions at the macroscale. Comparing across these two scales for all previously-identified

timescale-related genes in two studies (N = 170 (Tripathy et al., 2017) and 4168 (Bomkamp et al.,

2019) genes), we find a significant correlation between the strength of association at the single-cell

and macroscale levels (Figure 3.3D, horizontal black lines; ρ = 0.36 and 0.25 for the two datasets,

p < 0.001 for both). Furthermore, genes with stronger associations to timescale tend to conserve

this relationship across single-cell and macroscale levels (Figure 3.3D, separated by macroscale

correlation magnitude). Thus, the association between cellular variations in gene expression

and cell-intrinsic temporal dynamics is captured at the macroscale, even though scRNAseq and

microarray data represent entirely different measurements of gene expression.

While we have shown associations between cortical timescales and genes suspected to

influence neuronal dynamics, these data present an opportunity to discover additional novel

genes that are functionally related to timescales through a data-driven approach. However, since

transcriptomic variation and anatomical hierarchy overlap along a shared macroscopic gradient

(Burt et al., 2018; Huntenburg et al., 2018; Margulies et al., 2016), we cannot specify the role

certain genes play based on their level of association with timescale alone: gene expression

differences across the cortex first result in cell-type and connectivity differences, sculpting

the hierarchical organization of cortical anatomy. Consequently, anatomy and cell-intrinsic

properties jointly shape neuronal dynamics through connectivity differences (Chaudhuri et al.,

2015; Demirtaş et al., 2019) and expression of ion transport and receptor proteins with variable
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activation timescales, respectively. Therefore, we ask whether variation in gene expression still

accounts for variation in timescale beyond the principal structural gradient, and if associated

genes have known functional roles in biological processes (schematic in Figure 3.3E). To do this,

we first remove the contribution of anatomical hierarchy by linearly regressing out the T1w/T2w

gradient from both timescale and individual gene expression gradients. We then fit partial least

squares (PLS) models to simultaneously estimate regression weights for all genes (Whitaker

et al., 2016), submitting those with significant associations for gene ontology enrichment analysis

(GOEA) (Klopfenstein et al., 2018).

We find that genes highly associated with neuronal timescales are preferentially related to

transmembrane ion transporter complexes, as well as GABAergic synapses and chloride channels

(see Figure 3.3F and Supplementary File 1, Table 3.3 for GOEA results with brain genes only, and

Supplementary File 2, Table 3.4 for all genes). When restricted to positively-associated genes only

(expression increases with timescales), one functional group related to phosphatidate phosphatase

activity is uncovered, including the gene PLPPR1, which has been linked to neuronal plasticity

(Savaskan et al., 2004), which is a much slower timescale physiological process. Conversely,

genes that are negatively associated with timescale are related to numerous groups involved in

the construction and functioning of transmembrane transporters and voltage-gated ion channels,

especially potassium and other inorganic cation transporters. To further ensure that these genes

specifically relate to neuronal timescale, we perform the same enrichment analysis with T1w/T2w

vs. gene maps as a control. The control analysis yields no significant GO terms when restricted to

brain-specific genes (in contrast to Figure 3.3F), while repeating the analysis with all genes does

yield significant GO terms related to ion channels and synapses, but are much less specific to

those (see Supplementary File 3, Table 3.5), including a variety of other gene clusters associated

with general metabolic processes, signalling pathways, and cellular components. This further

strengthens the point that removing the contribution of T1w/T2w aids in identifying genes that

are more specifically associated with neurodynamics, suggesting that inhibition (Telenczuk et al.,
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2017)—mediated by GABA and chloride channels—and voltage-gated potassium channels have

prominent roles in shaping neuronal timescale dynamics at the macroscale level, beyond what’s

expected based on the anatomical hierarchy alone.

Timescales lengthen in working memory and shorten in aging

Finally, having shown that neuronal timescales are associated with stable anatomical

and gene expression gradients across the human cortex, we turn to the final question of the

study: are cortical timescales relatively static, or are they functionally dynamic and relevant for

human cognition. While previous studies have shown hierarchical segregation of task-relevant

information corresponding to intrinsic timescales of different cortical regions (Baldassano et al.,

2017; Chien & Honey, 2020; Honey et al., 2012; Runyan et al., 2017; Sarafyazd & Jazayeri,

2019; Wasmuht et al., 2018), as well as optimal adaptation of behavioral timescales to match

the environment (Ganupuru et al., 2019; Ossmy et al., 2013), evidence for functionally relevant

changes in regional neuronal timescales is lacking. Here, we examine whether timescales undergo

short- and long-term shifts during working memory maintenance and aging, respectively.

We first analyze human ECoG recordings from parietal, frontal (PFC & OFC), and

medial temporal (MTL) regions of patients (N = 14) performing a visuospatial working memory

task that requires a delayed cued response (Figure 3.4A) (Johnson et al., 2018a). Neuronal

timescales were extracted for pre-stimulus baseline and memory maintenance delay periods (900

ms, both stimulus-free). Replicating our previous result in Figure 3.5G, we observe that baseline

neuronal timescales follow a hierarchical progression across association regions, where parietal

cortex, PFC, OFC, and MTL have gradually longer timescales (pairwise Mann-Whitney U test,

Figure 3.4B). If neuronal timescales track the temporal persistence of information in a functional

manner, then they should expand during delay periods. Consistent with our prediction, timescales

in all regions are ∼20% longer during delay periods (Figure 3.4C; Wilcoxon rank-sum test).

Moreover, only timescale changes in the PFC are significantly correlated with behavior across
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participants, where longer delay-period timescales relative to baseline are associated with better

working memory performance (Figure 3.4D, ρ = 0.75, p = 0.003). No other spectral features in

the recorded brain regions show consistent changes from baseline to delay periods while also

significantly correlating with individual performance, including the 1/f-like spectral exponent,

narrowband theta (3-8 Hz), and high-frequency (70-100 Hz) activity power (Figure 3.11).
Figure 4. Working memory & aging
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Figure 3.4: Timescales expand during working memory maintenance while tracking performance,
and task-free average timescales compress in older adults. (A) 14 participants with overlapping
intracranial coverage performed a visuospatial working memory task, with 900 ms of baseline
(pre-stimulus) and delay period data analyzed (PC: parietal, PFC: prefrontal, OFC: orbitofrontal,
MTL: medial temporal; n denotes number of subjects with electrodes in that region). (B) baseline
timescales follow hierarchical organization within association regions (*: p < 0.05, Mann-Whitney
U test; small dots represent individual participants, large dots and errorbar for mean±s.e.m. across
participants). (C) all regions show significant timescale increase during delay period compared
to baseline (asterisks represent p < 0.05, 0.01, 0.005, 0.001, Wilcoxon signed-rank test). (D)
PFC timescale expansion during delay periods predicts average working memory accuracy across
participants (dot represents individual participants, mean±s.e.m. across PFC electrodes within
participant); inset: correlation between working memory accuracy and timescale change for all
regions. (E) in the MNI-iEEG dataset, participant-average cortical timescales decrease (become
faster) with age (n = 71 participants with at least 10 valid parcels, see Figure 3.12B). (F) most
cortical parcels show a negative relationship between timescales and age, with the exception
being parts of the visual cortex and the temporal poles (one-sample t-test, t = -7.04, p < 0.001; n
= 114 parcels where at least 6 participants have data, see Figure 3.12C).

109



While timescales are consistent with the anatomical and gene expression hierarchy at

a snapshot, brain structure itself is not static over time, undergoing many slower, neuroplastic

changes during early development and throughout aging in older populations. In particular,

aging is associated with a broad range of functional and structural changes, such as working

memory impairments (Voytek et al., 2015b; Wang et al., 2011), as well as changes in neuronal

dynamics (Voytek et al., 2015b; Voytek & Knight, 2015; Wang et al., 2011) and cortical structure

(de Villers-Sidani et al., 2010), such as the loss of slow-deactivating NMDA receptor subunits

(Pegasiou et al., 2020). Since neuronal timescales may support working memory maintenance,

we predict that timescales would shorten across the lifespan, in agreement with the observed

cognitive and structural deteriorations. To this end, we leverage the wide age range in the MNI-

iEEG dataset (13-62 years old) and probe average cortical timescales for each participant as a

function of age. Since ECoG coverage is sparse and non-uniform across participants, simply

averaging across parcels within individual participants confounds the effect of aging with the

spatial effect of cortical hierarchy. Instead, we first normalize each parcel by its max value across

all participants before averaging within participants, excluding those with fewer than 10 valid

parcels (N = 71 of 106 subjects remaining; results hold for a large range of threshold values,

Figure 3.12B). We observe that older adults have faster neuronal timescales (ρ = -0.31, p = 0.010;

Figure 3.4E), and that timescales shorten with age in most areas across the cortex (Figure 3.4F,

t = -7.04, p < 0.001; 114 out of 189 parcels where at least 6 participants have data, see Figure

3.12C). This timescale compression is especially prominent in sensorimotor, temporal, and medial

frontal regions. These results support our hypothesis that neuronal timescales, estimated from

transmembrane current fluctuations, can rapidly shift in a functionally relevant manner, as well as

slowly—over decades—in healthy aging.
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3.3 Discussion

Theoretical accounts and converging empirical evidence predict a graded variation of

neuronal timescales across the human cortex (Chaudhuri et al., 2015; Huntenburg et al., 2018;

Wang, 2020), which reflects functional specialization and implements hierarchical temporal

processing crucial for complex cognition (Kiebel et al., 2008). This timescale gradient is thought

to emerge as a consequence of cortical variations in cytoarchitecture, as well as both macroscale

and microcircuit connectivity, thus serving as a bridge from brain structure to cognitive function

(Kanai and Rees 2011). In this work, we infer the timescale of non-rhythmic transmembrane cur-

rent fluctuations from invasive human intracranial recordings and test those predictions explicitly.

We discuss the implications and limitations of our findings below.

Multiple quantities for neuronal timescale and anatomical hierarchy

We first find that neuronal timescales vary continuously across the human cortex and

coincide with the anatomical hierarchy, with timescales increasing from primary sensory and

motor to association regions. While we use the continuous T1w/T2w gradient as a surrogate

measure for anatomical hierarchy, there are multiple related but distinct perspectives on what

“cortical hierarchy” means, including, for example, laminar connectivity patterns from tract tracing

data (Felleman & Van Essen, 1991; Vezoli et al., 2020), continuous (and latent-space) gradients

of gene expression and microarchitectural features (Huntenburg et al., 2018), and network

connectivity scales (see review of (Hilgetag & Goulas, 2020))—with most of these following a

graded sensorimotor-to-association area progression. Similarly, it is important to note that there

exist many different quantities that can be considered as characteristic neuronal timescales across

several spatial scales, including membrane potential and synaptic current timescales (Duarte

et al., 2017), single-unit spike-train timescales (Murray et al., 2014), population code timescales

(Runyan et al., 2017), and even large-scale circuit timescales measured from the fMRI BOLD
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signal (Watanabe et al., 2019). We show here that timescales inferred from ECoG are consistently

approximately ten times faster than single-unit spiking timescales in macaques, corroborating the

fact that field potential signals mainly reflect fast transmembrane and synaptic currents (Buzsáki

et al., 2012), whose timescales are related to, but distinct from, single-unit timescales measured

in previous studies (Dotson et al., 2018; Ogawa & Komatsu, 2010; Wasmuht et al., 2018).

Because field potential fluctuations are driven by currents from both locally generated

and distal inputs, our results raise questions on how and when these timescales interact to shape

downstream spiking dynamics. Furthermore, while we specifically investigate here the aperiodic

timescale, which corresponds to the exponential decay timescale measured in previous studies,

recent work has shown a similar gradient of oscillatory timescales (i.e., frequency) along the

anterior-posterior axis of the human cortex (Mahjoory et al., 2020). Based on the similarity of

these gradients and known mechanisms of asynchronous and oscillatory population dynamics

(e.g., balance of excitation and inhibition in generating gamma oscillations and the asynchronous

irregular state in cortical circuits (Brunel, 2000; Brunel & Wang, 2003)), we speculate that

timescales of oscillatory and aperiodic neural dynamics may share (at least partially) circuit

mechanisms at different spatial scales, analogous to the relationship between characteristic

frequency and decay constant in a damped harmonic oscillator model.

Collinearity and surrogate nature of post-mortem gene expression gradi-

ents

Using post-mortem gene expression data as a surrogate for protein density, transcriptomic

analysis uncovers the potential roles that transmembrane ion transporters and synaptic receptors

play in establishing the cortical gradient of neuronal timescales. The expression of voltage-

gated potassium channel, chloride channel, and GABAergic receptor genes, in particular, are

strongly associated with the spatial variation of neuronal timescale. Remarkably, we find that

electrophysiology/transcriptomic relationships discovered at the single-cell level, through patch-
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clamp recordings and single-cell RNA sequencing, are recapitulated at the macroscale between

bulk gene expression and timescales inferred from ECoG. That being said, it is impossible to make

definitive causal claims with the data presented in this study, especially considering the fact that

several microanatomical features, such as grey matter myelination and cortical thickness, follow

similar gradients across the cortex (Burt et al., 2018). To discover genes specifically associated

with timescale while accounting for the contribution of the overlapping anatomical hierarchy, we

linearly regress out the T1w/T2w gradient from both timescale and gene expression gradients.

Although this procedure does not account for any nonlinear contributions from anatomy, gene

enrichment control analysis using T1w/T2w instead of timescales further demonstrates that

the discovered genes—transmembrane ion transporters and inhibitory synaptic receptors—are

more specifically associated with the timescale gradient, over and above the level predicted

by anatomical hierarchy alone. From these results, we infer that potassium and chloride ion

channels, as well as GABAergic receptors, may play a mechanistic role in altering the timescale

of transmembrane currents at the macroscopic level.

However, this interpretation rests on the key assumption that mRNA expression level is a

faithful representation of the amount of functional proteins in a given brain region. In general,

gene expression levels are highly correlated with the percentage of cells expressing that gene

within brain regions (Lein et al., 2007). Therefore, on a population level, the regional density of a

particular ion channel or receptor protein is high if bulk mRNA expression is high. Furthermore,

recent works have shown that neurotransmitter receptor density measured via autoradiography

in post-mortem brains follows similar cortical gradients (Goulas et al., 2020), and that gene

expression levels of neurotransmitter receptors (e.g., 5HT) are strongly correlated with ligand

binding potential measured via PET (Gryglewski et al., 2018). Thus, as a first order approximation,

receptor gene expression is an adequate surrogate for receptor protein density in the brain at the

macroscale, though the relationship between mRNA expression and their transport and translation

into channel proteins, the process of incorporating those proteins into membranes and synapses,
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and how these gene expression maps can be related to other overlapping macroscopic gradients

are complex issues (see e.g., (Fornito et al., 2019; Liu et al., 2016)). Thus, our analyses represent

an initial data-mining process at the macroscopic level, which should motivate further studies in

investigating the precise roles voltage-gated ion channels and synaptic inhibition play in shaping

functional neuronal timescales through causal manipulations, complementary to existing lines of

research focusing on NMDA activation and recurrent circuit motifs.

Structural constraints vs. behaviorally-required flexibility in timescale

Finally, we show that neuronal timescales are not static, but can change both in the

short- and long-term. Transmembrane current timescales across multiple association regions,

including parietal, frontal, and medial temporal cortices, increase during the delay period of

a working memory task, consistent with the emergence of persistent spiking during working

memory delay. Working memory performance across individuals, however, is predicted by the

extent of timescale increase in the PFC only. This further suggests that behaviorally relevant

neural activity may be localized despite widespread task-related modulation (Pinto et al., 2019),

even at the level of neuronal membrane fluctuations. In the long-term, we find that neuronal

timescale shortens with age in most cortical regions, linking age-related synaptic, cellular, and

connectivity changes—particularly those that influence neuronal integration timescale—to the

compensatory posterior-to-anterior shift of functional specialization in healthy aging (Davis et al.,

2008).

These results raise further questions regarding contrasting, and potentially complementary,

aspects of neuronal timescale: on the one hand, task-free timescales across the cortex are shaped

by relatively static macro- and microarchitectural properties (Figures 2 and 3); on the other

hand, timescales are dynamic and shift with behavioral demand (Figure 3.4). While long-

term structural changes in the brain can explain shifts in neuronal timescales throughout the

aging process, properties such as ion channel protein density probably do not change within
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seconds during a working memory task. We speculate that structural properties may constrain

dynamical properties (such as timescale) to a possible range within a particular brain region and

at different spatial scales, while task requirements, input statistics, short-term synaptic plasticity,

and neuromodulation can then shift timescale within this range. We posit, then, that only shifts

in dynamics within the area of relevance (i.e., PFC for working memory) are indicative of task

performance, consistent with recent ideas of computation-through-dynamics (Vyas et al., 2020).

Nevertheless, which neuromodulatory and circuit mechanisms are involved in shifting local

timescales, and how timescales at different spatial scales (e.g., synaptic, neuronal, population)

interact to influence each other (Breakspear, 2017; Duarte et al., 2017; Freeman, 2000; Freeman

& Erwin, 2008; Gjorgjieva et al., 2016; Shine et al., 2019) remain open questions for future

investigation.

Conclusion

In summary, we identify consistent and converging patterns between transcriptomics,

anatomy, dynamics, and function across multiple datasets of different modalities from different

individuals and multiple species. As a result, evidence for these relationships can be supplemented

by more targeted approaches such as imaging of receptor metabolism. Furthermore, the introduc-

tion and validation of an open-source toolbox (Donoghue et al., 2020) for inferring timescales

from macroscale electrophysiological recordings potentially allows for the non-invasive estima-

tion of neuronal timescales, using widely accessible tools such as EEG and MEG. These results

open up many avenues of research for discovering potential relationships between microscale

gene expression and anatomy with the dynamics of neuronal population activity at the macroscale

in humans.
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3.4 Materials & Methods

Summary of data and code All IPython notebooks: https://github.com/rdgao/field-

echos/tree/master/notebooks. Projection of T1w/T2w and gene expression maps from MNI volu-

metric coordinates to HCP-MMP1.0 can be found: https://github.com/rudyvdbrink/Surface_projection.

Table 3.1: Summary of open-access datasets used.
Data Ref. Specific Source/

Format Used
Participant info Relevant

Figures
MNI Open iEEG
Atlas

(Frauscher et al.,
2018b,a)

N = 105 (48 fe-
male); Ages: 13-
65, 33.4±10.6

Fig. 2A-D,
Fig. 3, Fig.
4E-F

Tw1/T2w &
cortical thickness
maps from Hu-
man Connectome
Project

(Glasser &
Van Essen, 2011;
Glasser et al.,
2016)

Release S1200,
March 1, 2017

N = 1096 (596
female); Ages:
22-36+ (details
restricted due to
identifiability)

Fig. 2C-D,
Fig. 3D-F

Neurotycho
macaque ECoG

(Nagasaka et al.,
2011; Yanagawa
et al., 2013)

Eyes-open state
from anesthesia
datasets (propofol
and ketamine)

2 animals (Chibi
and Geroge), 4
sessions each

Fig. 2E-G

Macaque single-
unit timescales

(Murray et al.,
2014)

Fig. 1 of refer-
ence

Fig. 2E-G

Whole-cortex in-
terpolated Allen
Brain Atlas hu-
man gene expres-
sion

(Hawrylycz et al.,
2012; Gryglewski
et al., 2018)

N = 6 (1 fe-
male); Age:
24,31,39,49,55,57
(42.5±12.2)

Fig. 3

Single-cell
timescale-related
genes

(Tripathy et al.,
2017; Bomkamp
et al., 2019)

Table S3 from
(Tripathy et al.,
2017), Online
Table 1 from
(Bomkamp et al.,
2019)

N = 170 (Tripathy
et al., 2017) and
4168 (Bomkamp
et al., 2019) genes

Fig. 3C-D

Human working
memory ECoG

(Johnson et al.,
2018b,a; Johnson,
2019, 2018)

CRCNS fcx-2
and fcx-3

N = 14 (5 fe-
male); Age: 22-
50, 30.9±7.8

Fig. 4A-D

Inferring timescale from autocorrelation and power spectral density. Consistent with
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Table 3.2: Reproducing figures from code repository.
Notebook Results
1_sim_method_schematic.ipynb simulations: Fig. 1B-E
2_viz_NeuroTycho-SU.ipynb macaque timescales: Fig. 2E-G, Figure 2—figure supple-

ment 4
3_viz_human_structural.ipynb human timescales vs. T1w/T2w and gene expression:

Fig. 2A-D, Figure 2—figure supplement 1,3, Fig. 3, Figure
3—figure supplement 1-2, Supplementary File 1-3

4b_viz_human_wm.ipynb human working memory: Fig. 4A-D, Figure 4—figure
supplement 1

4a_viz_human_aging.ipynb human aging: Fig. 4E-F, Figure 4—figure supplement 2
supp_spatialautocorr.ipynb spatial autocorrelation-preserving nulls: Figure 2—fig-

ure supplement 2

previous studies, we define “neuronal timescale” as the exponential decay time constant (τ) of the

empirical autocorrelation function (ACF), or lagged correlation (Honey et al., 2012; Murray et al.,

2014). τ can be naively estimated to be the time it takes for the ACF to decrease by a factor of e

when there are no additional long-term, scale-free, or oscillatory processes, or by fitting a function

of the form f (t) = e
−t
τ and extracting the parameter τ. Equivalently, the power spectral density

(PSD) is the Fourier Transform of the ACF via Wiener-Khinchin theorem (Khintchine, 1934),

and follows a Lorentzian function of the form L( f ) = A
k+ f χ for approximately exponential-decay

processes, with χ=2 exactly when the ACF is solely composed of an exponential decay term,

though it is often variable and in the range between 2-6 for neural time series (Donoghue et al.,

2020; Miller et al., 2009; Podvalny et al., 2015; Voytek et al., 2015b). Timescale can be computed

from the parameter k as τ = 1
2π fk

, where fk ≈ k
1
χ is approximated to be the “knee frequency”, at

which a bend or knee in the power spectrum occurs, and equality holds when χ=2.

Computing power spectral density (PSD). PSDs are estimated using a modified Welch’s

method, where short-time windowed Fourier transforms (STFT) are computed from the time

series, but the median is taken across time instead of the mean (in conventional Welch’s method)

to minimize the effect of high-amplitude transients and artifacts (Izhikevich et al., 2018). Custom

functions for this can be found in NeuroDSP (Cole et al., 2019), a published and open-source
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digital signal processing toolbox for neural time series (neurodsp.spectral.compute_spectrum).

For simulated data, Neurotycho macaque ECoG, and MNI-iEEG datasets, we use 1-second long

Hamming windows with 0.5-s overlap. To estimate single-trial PSDs for the working memory

ECoG dataset (CRCNS Johnson-ECoG (Johnson, 2019, 2018)), we simply apply Hamming

window to 900-ms long epoched time series and compute the squared magnitude of the windowed-

Fourier transform.

Spectral parametrization - Fitting Oscillations and 1/f (FOOOF). We apply spectral

parameterization (Donoghue et al., 2020) to extract timescales from PSDs. Briefly, we decompose

log-power spectra into a summation of narrowband periodic components—modeled as Gaus-

sians—and an aperiodic component—modeled as a generalized Lorentzian function centered at 0

Hz (L( f ) above). For inferring decay timescale, this formalism can be practically advantageous

when a strong oscillatory or variable power-law (χ) component is present, as is often the case for

neural signals. While oscillatory and power-law components can corrupt naive measurements of

τ as time for the ACF to reach 1
e , they can be easily accounted for and ignored in the frequency

domain as narrowband peaks and 1/f-exponent fit. We discard the periodic components and infer

timescale from the aperiodic component of the PSD. For a complete mathematical description of

the model, see (Donoghue et al., 2020).

Simulation and validation. We simulate the aperiodic background component of neural

field potential recordings as autocorrelated stochastic processes by convolving Poisson population

spikes with exponentially-decaying synaptic kernels with predefined decay time constants (neu-

rodsp.sim.sim_synaptic_current). PSDs of the simulated data are computed and parameterized as

described above, and we compare the fitted timescales with their ground-truth values.

Macaque ECoG and single unit timescales data. Macaque single-unit timescales are

taken directly from values reported in Figure 1c of (Murray et al., 2014). Whole-brain surface

ECoG data (1000Hz sampling rate) is taken from the Neurotycho repository (Nagasaka et al.,

2011; Yanagawa et al., 2013), with 8 sessions of 128-channel recordings from two animals
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(George and Chibi, 4 sessions each). Results reported in Figure. 2E-G are from 10 minutes

eyes-open resting periods to match the pre-stimulus baseline condition of single-unit experiments.

Timescales for individual ECoG channels are extracted and averaged over regions corresponding

to single-unit recording areas from (Murray et al., 2014) (Figure 3.2F inset and Figure 3.8), which

are selected visually based on the overlapping cortical map and landmark sulci/gyri. Each region

included between 2-4 electrodes (see Figure 3.8B for selected ECoG channel indices for each

region).

Statistical analysis for macaque ECoG and spiking timescale. For each individual

recording session, as well as the grand average, Spearman rank correlation was computed between

spiking and ECoG timescales. Linear regression models were fit using the python package scipy

(Virtanen et al., 2020) (scipy.stats.linregress) and the linear slope was used to compute the scaling

coefficient between spiking and ECoG timescales.

Variations in neuronal timescale, T1/T2 ratio, and mRNA expression across human

cortex. The following sections describe procedures for generating the average cortical gradient

maps for neuronal timescale, MR-derived T1w/T2w ratio, and gene expression from the respective

raw datasets. All maps were projected onto the 180 left hemisphere parcels of Human Connectome

Project’s Multimodal Parcellation (Glasser et al., 2016) (HCP-MMP1.0) for comparison, described

in the individual sections. All spatial correlations are computed as Spearman rank correlations

between maps. Procedure for computing statistical significance while accounting for spatial

autocorrelation is described in detail below under the sections spatial statistics and spatial

autocorrelation modeling.

Neuronal timescale map. The MNI Open iEEG dataset consists of 1 minute of resting

state data across 1772 channels from 106 epilepsy patients (13-62 years old, 58 males and 48

females), recorded using either surface strip/grid or stereoEEG electrodes, and cleaned of visible

artifacts (Frauscher et al., 2018a,b). Neuronal timescales were extracted from PSDs of individual

channels, and projected from MNI voxel coordinates onto HCP-MMP1.0 surface parcellation as
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follows:

For each patient, timescale estimated from each electrode was extrapolated to the rest of the

cortex in MNI coordinates using a Gaussian weighting function (confidence mask), w(r) = e−
r2

α2 ,

where r is the Euclidean distance between the electrode and a voxel, and α is the distance scaling

constant, chosen here such that a voxel 4mm away has 50% weight (or, confidence). Timescale

at each voxel is computed as a weighted spatial average of timescales from all electrodes (i) of

that patient, i.e., τvoxel =
∑i w(ri)τi
∑i w(ri)

. Similarly, each voxel is assigned a confidence rating that is the

maximum of weights over all electrodes (wvoxel (rmin), of the closest electrode), i.e., a voxel right

under an electrode has a confidence of 1, while a voxel 4mm away from the closest electrode has

a confidence of 0.5, etc.

Timescales for each HCP-MMP parcel were then computed as the confidence-weighted

arithmetic mean across all voxels that fall within the boundaries of that parcel. HCP-MMP

boundary map is loaded and used for projection using NiBabel (Brett et al., 2020). This results

in a 180 parcels-by-106 patients timescale matrix. A per-parcel confidence matrix of the same

dimensions was computed by taking the maximum confidence over all voxels for each parcel

(Figure 3.5A). The average cortical timescale map (gradient) is computed by taking the confidence-

weighted average at each parcel across all participants. Note that this procedure for locally

thresholded and weighted average is different from projection procedures used for the mRNA

and T1w/T2w data due to region-constrained and heterogeneous ECoG electrode sites across

participants. While coverage is sparse and idiosyncratic in individual participants, it does not vary

as a function of age, and when pooling across the entire population, 178 of 180 parcels have at

least one patient with an electrode within 4mm, with the best coverage in sensorimotor, temporal,

and frontal regions (Figure 3.5).

T1w/T2w ratio and cortical thickness maps. As a measure of structural cortical hier-

archy, we used the ratio between T1- and T2-weighted structural MRI, referred to as T1w/T2w

map in main text, or the myelin map (Burt et al., 2018; Glasser & Van Essen, 2011). Since there
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is little variation in the myelin map across individuals, we used the group average myelin map of

the WU-Minn HCP S1200 release (N = 1096, March 1, 2017 release) provided in HCP-MMP1.0

surface space. For correlation with other variables, we computed the median value per parcel,

identical to the procedure for mRNA expression below. Cortical thickness map was similarly

generated.

mRNA expression maps. We used the Allen Human Brain Atlas (AHBA) gene expres-

sion dataset (Hawrylycz et al., 2012, 2015) that comprised postmortem samples of 6 donors (1

female, 5 male) that underwent microarray transcriptional profiling. Spatial maps of mRNA

expression were available in volumetric 2 mm isotropic MNI space, following improved nonlinear

registration and whole-brain prediction using variogram modeling as implemented by (Gryglewski

et al., 2018). We used whole-brain maps available from (Gryglewski et al., 2018) rather than the

native sample-wise values in the AHBA database to prevent bias that could occur due to spatial

inhomogeneity of the sampled locations. In total, 18114 genes were included for analyses that

related to the dominant axis of expression across the genome.

We projected the volumetric mRNA expression data onto the HCP-MMP cortical surface

using the HCP workbench software (v1.3.1 running on Windows OS 10) with the “enclosing”

method, and custom MATLAB code (github.com/rudyvdbrink/surface_projection). The enclosing

method extracts for all vertices on the surface the value from enclosing voxels in the volumetric

data. Alternative projection methods such as trilinear 3D linear interpolation of surrounding

voxels, or ribbon mapping that constructs a polyhedron from each vertex’s neighbors on the

surface to compute a weighted mean for the respective vertices, yielded comparable values, but

less complete cortical coverage. Moreover, the enclosing method ensured that no transformation

of the data (non-linear or otherwise) occurred during the projection process and thus the original

values in the volumetric data were preserved.

Next, for each parcel of the left hemisphere in HCP-MMP, we extracted the median

vertex-wise value. We used the median rather than the mean because it reduced the contribution
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of outliers in expression values within parcels. Vertices that were not enclosed by voxels that

contained data in volumetric space were not included in the parcel-wise median. This was the

case for 539 vertices (1.81% of total vertices). Linear interpolation across empty vertices prior to

computing median parcel-wise values yielded near-identical results (r = 0.95 for reconstructed

surfaces). Lastly, expression values were mean and variance normalized across parcels to facilitate

visualization. Normalization had no effect on spatial correlation between gene expression and

other variables since the spatial distribution of gene expression was left unaltered.

Selection of brain-specific genes. Similar to (Burt et al., 2018; Fagerberg et al., 2014;

Genovese et al., 2016), N = 2429 brain-specific genes were selected based on the criteria that

expression in brain tissues were 4 times higher than the median expression across all tissue types,

using Supplementary Dataset 1 of (Fagerberg et al., 2014). PC1 result shown in Figure 3.3A is

computed from brain-specific genes, though findings are identical when using all genes (ρ = -0.56

with timescale map, Figure 3.9).

Spatial statistics. All correlations between spatial maps (timescale, T1w/T2w, gene

principal component, and individual gene expressions) were computed using Spearman rank

correlation. As noted in (Burt et al., 2018, 2020; Vos de Wael et al., 2020), neural variables vary

smoothly and continuously across the cortical surface, violating the assumption of independent

samples. As a result, when correlating two variables, each with non-trivial spatial autocorrelation,

the naive p-value is artificially lowered since it is compared against an inappropriate null hypothe-

sis, i.e., randomly distributed or shuffled values across space. Instead, a more appropriate null

hypothesis introduces spatial autocorrelation-preserving null maps, which destroys any potential

correlation between two maps while respecting their spatial autocorrelations. For all spatial

correlation analyses, we generated N = 1000 null maps of one variable (timescale map unless

otherwise noted), and the test statistic, Spearman correlation (ρ), is computed against the other

variable of interest to build the null distribution. Two-tailed significance is then computed as the

proportion of the null distribution that is less extreme than the empirical correlation value. All
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regression lines were computed by fitting a linear regression to log-timescale and the structural

feature maps.

Spatial autocorrelation modeling. To generate spatial autocorrelation-preserving null

maps, we used Moran’s Spectral Randomization (MSR) (Wagner & Dray, 2015) from the python

package BrainSpace (Vos de Wael et al., 2020). Details of the algorithm can be found in the above

references. Briefly, MSR performs eigendecomposition on a spatial weight matrix of choice,

which is taken here to be the inverse average geodesic distance matrix between all pairs of parcels

in HCP-MMP1.0. The eigenvectors of the weight matrix are then used to generate randomized

null feature maps that preserves the autocorrelation of the empirical map. We used the singleton

procedure for null map generation. All significance values reported (Figure 3.2D, Figure 3.3A-C)

were adjusted using the above procedure.

We also compare two other methods of generating null maps: spatial variogram fitting

(Burt et al., 2020) and spin permutation (Alexander-Bloch et al., 2018). Null maps were generated

for timescale using spatial variogram fitting, while for spin permutation they were generated

for vertex-wise T1w/T2w and gene PC1 maps before parcellation, so as to preserve surface

locations of the parcellation itself. All methods perform similarly, producing comparable spatial

autocorrelation in the null maps, assessed using spatial variogram, as well as null distribution of

spatial correlation coefficients between timescale and T1w/T2w (Figure 3.6).

Principal Component Analysis (PCA) of gene expression. We used scikit-learn (Pe-

dregosa, 2011) PCA (sklearn.decomposition.PCA) to identify the dominant axes of gene expres-

sion variation across the entire AHBA dataset, as well as for brain-specific genes. PCA was

computed on the variance-normalized average gene expression maps, X, an N x P matrix where N

= 18114 (or N = 2429 brain-specific) genes, and P = 180 cortical parcels. Briefly, PCA factorizes

X such that X =USV T , where U and V are unitary matrices of dimensionality N x N and P x P,

respectively. S is the same dimensionality as X and contains non-negative descending eigenvalues

on its main diagonal (Λ). Columns of V are defined as the principal components (PCs), and the
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dominant axis of gene expression is then defined as the first column of V, whose proportion of

variance explained in the data is the first element of Λ divided by the sum over Λ. Results for

PC1 and PC2-10 are shown in Figure 3.3A and Figure 3.9, respectively.

Comparison of timescale-transcriptomic association with single-cell timescale genes.

Single-cell timescale genes were selected based on data from Table S3 and Online Table 1 of

(Tripathy et al., 2017; Bomkamp et al., 2019), respectively. Using single-cell RNA sequencing

data and patch-clamp recordings from transgenic mice cortical neurons, these studies identified

genes whose expression significantly correlated with electrophysiological features derived from

generalized linear integrate and fire (GLIF) model fits. We selected genes that were significantly

correlated to membrane time constant (tau), input resistance (Rin or ri), or capacitance (Cm or

cap) in the referenced data tables, and extracted the level of association between gene expression

and those electrophysiological feature (correlation ‘DiscCorr’ in (Tripathy et al., 2017) and linear

coefficient “beta_gene” in (Bomkamp et al., 2019)).

To compare timescale-gene expression association at the single-cell and macroscale level,

we correlated the single-cell associations extracted above with the spatial correlation coefficient

(macroscale ρ) between ECoG timescale and AHBA microarray expression data for those same

genes, restricting to genes with p < 0.05 for macroscale correlation (results identical for non-

restrictive gene set). Overall association for all genes, as well as split by quintiles of their

absolute macroscale correlation coefficient, are shown in Figure 3.3D. Example “single-cell

timescale” genes shown in Figure 3.3B-C are genes showing the highest correlations with those

electrophysiology features reported in Table 2 of (Bomkamp et al., 2019).

T1w/T2w-removed timescale and gene expression residual maps. To remove anatom-

ical hierarchy as a potential mediating variable in timescale-gene expression relationships, we

linearly regress out the T1w/T2w map from the (log) timescale map and individual gene expres-

sion maps. T1w/T2w was linearly fit to log-timescale, and the error between T1w/T2w-predicted

timescale and empirical timescale was extracted (residual); this identical procedure was applied
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to every gene expression map to retrieve the gene residuals. Spatial autocorrelation-preserving

null timescale residual maps were similarly created using MSR.

Partial least squares regression model. Due to multicollinearity in the high-dimensional

gene expression dataset (many more genes than parcels), we fit a partial least squares model to

the timescale map with one output dimension (sklearn.cross_decomposition.PLSRegression) to

estimate regression coefficient for all genes simultaneously, resulting in N = 18114 (or N = 2429

brain-specific) PLS weights (Vértes et al., 2016; Whitaker et al., 2016). To determine significantly

associated (or, “enriched”) genes, we repeated the above PLS-fitting procedure 1000 times but

replaced the empirical timescale map (or residual map) with null timescale maps (or residual

maps) that preserved its spatial autocorrelation. Genes whose absolute empirical PLS weight that

was greater than 95% of its null weight distribution was deemed to be enriched, and submitted for

gene ontology enrichment analysis.

Gene ontology enrichment analysis (GOEA). The Gene Ontology (GO) captures hier-

archically structured relationships between GO items representing aspects of biological processes

(BP), cellular components (CC), or molecular functions (MF). For example, "synaptic signaling”,

"chemical synaptic transmission", and "glutamatergic synaptic transmission" are GO items with

increasing specificity, with smaller subsets of genes associated with each function. Each GO item

is annotated with a list of genes that have been linked to that particular process or function. GOEA

examines the list of enriched genes from above to identify GO items that are more associated

with those genes than expected by chance. We used GOATOOLS (Klopfenstein et al., 2018) to

perform GOEA programmatically in python.

The list of unranked genes with significant empirical PLS weights was submitted for

GOEA as the “study set”, while either the full ABHA list or brain-specific gene list was used

as the “reference set”. The output of GOEA is a list of GO terms with annotated genes that are

enriched or purified (i.e., preferentially appearing or missing in the study list, respectively) more

often than by chance, determined by Fisher’s exact test.
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Enrichment ratio is defined as follows: given a reference set with N total genes, and n

were found to be significantly associated with timescale (in the study set), for a single GO item

with B total genes annotated to it, where b of them overlap with the study set, then enrichment =

(b/n)/(B/N). Statistical significance is adjusted for multiple comparisons following Benjamini-

Hochberg procedure (false discovery rate q-value reported in Figure 3.3F), and all significant GO

items (q < 0.05) are reported in Figure 3.3F, in addition to some example items that did not pass

significance threshold. For a detailed exposition, see (Bauer, 2017). Figure 3.3F shows results

using brain-specific genes. The GO items that are significantly associated are similar when using

the full gene set, but typically with larger q-values (Supplementary File 1 and 2, Table 3.3 and

3.4) due to a much larger set of (non-brain-specific) genes. Control analysis was conducted using

T1w/T2w, with 1000 similarly generated null maps, instead of timescale.

Working memory ECoG data and analysis. The CRCNS fcx-2 and fcx-3 datasets

include 17 intracranial ECoG recordings in total from epilepsy patients (10 and 7, respectively)

performing the same visuospatial working memory task (Johnson et al., 2018a,b; Johnson, 2019,

2018). Subject 3 (s3) from fcx-2 was discarded due to poor data quality upon examination of

trial-averaged PSDs (high noise floor near 20 Hz), while s5 and s7 from fcx-3 correspond to

s5 and s8 in fcx-2 and were thus combined. Together, data from 14 unique participants (22-50

years old, 5 female) were analyzed, with variable and overlapping coverage in parietal cortex (PC,

n=14), prefrontal cortex (PFC, n=13), orbitofrontal cortex (OFC, n=8), and medial temporal lobe

(MTL, n=9). Each channel was annotated as belonging to one of the above macro regions.

Experimental setup is described in (Johnson et al., 2018a,b; Johnson, 2019, 2018) in detail.

Briefly, following a 1-second pre-trial fixation period (baseline), subjects were instructed to focus

on one of two stimulus contexts (“identity” or “relation” information). Then two shapes were

presented in sequence for 200 ms each. After a 900 or 1150 ms jittered precue delay (delay1),

the test cue appeared for 800 ms, followed by another post-cue delay period of the same length

(delay2). Finally, the response period required participants to perform a 2-alternative forced
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choice test based on the test cue, which varied based on trial condition. For our analysis, we

collapsed across the stimulus context conditions and compared neuronal timescales during the last

900 ms of baseline and delay periods from the epoched data, which were free of visual stimuli,

in order to avoid stimulus-related event-related potential effects. Behavioral accuracy for each

experimental condition was reported for each participant, and we average across both stimulus

context conditions to produce a single working memory accuracy per participant.

Single-trial power spectra were computed for each channel as the squared magnitude of

the Hamming-windowed Fourier Transform. We used 900 ms of data in all 3 periods (pre-trial,

delay1, and delay2). Timescales were estimated by applying spectral parameterization as above,

and the two delay-period estimates were averaged to produce a single delay period value. For

comparison, we computed single-trial theta (3-8 Hz) and high-frequency activity (high gamma

(Mukamel et al., 2005), 70-100 Hz) powers as the mean log-power within those frequency bins,

as well as spectral exponent (χ). Single-trial timescale difference between delay and baseline was

calculated as the difference of the log timescales due to the non-normal distribution of single-trial

timescale estimates. All other neural features were computed by subtracting baseline from the

delay period.

All neural features were then averaged across channels within the same regions, then trials,

for each participant, to produce per-participant region-wise estimates, and finally averaged across

all participants for the regional average in Figure 3.4B-C. Two-sided Mann-Whitney U tests were

used to test for significant differences in baseline timescale between pairs of regions (Figure

3.4B). Two-sided Wilcoxon rank-sum tests were used to determine the statistical significance of

timescale change in each region (Figure 3.4C), where the null hypothesis was no change between

baseline and delay periods (i.e., delay is 100% of baseline). Spearman rank correlation was used

to determine the relationship between neural activity (timescale; theta; high-frequency; χ) change

and working memory accuracy across participants (Figure 3.4D, Figure 3.11).

Per-subject average cortical timescale across age. Since electrode coverage in the MNI-
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iEEG dataset is sparse and non-uniform across participants (Figure 3.5), simply averaging across

parcels within individuals to estimate an average cortical timescale per participant confounds the

effect of age with the spatial effect of cortical hierarchy. Therefore, we instead first normalize

each parcel by its max value across all participants before averaging within participants, excluding

those with fewer than 10 valid parcels (71 of 106 subjects remaining; results hold for a range of

threshold values; Figure 3.12B). Spearman rank correlation was used to compute the association

between age and average cortical timescale.

Age-timescale association for individual parcels. Each cortical parcel had a variable

number of participants with valid timescale estimates above the consistency threshold, so we

compute Spearman correlation between age and timescale for each parcel, but including only

those with at least 5 participants (114 of 180 parcels, result holds for a range of threshold values;

Figure 3.12C). Spatial effect of age-timescale variation is plotted in Figure 3.4F, where parcels

that did not meet the threshold criteria are greyed out. Mean age-timescale correlation from

individual parcels was significantly negative under one-sample t-test.
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3.5 Figure Supplements

Figure 3.5: Figure 3.2—figure supplement 1. MNI-iEEG dataset electrode coverage. (A) per-
parcel Gaussian-weighted mask values showing how close the nearest electrode was to a given
HCP-MMP1.0 parcel for each participant. Brighter means closer, 0.5 corresponds to the nearest
electrode being 4 mm away. (B) maximum mask weight for each parcel across all participants.
Most parcels have electrodes very close by in at least one participant across the entire participant
pool. (C) the number of valid HCP-MMP parcels each participant has above the confidence
threshold of 0.5 is uncorrelated with age. (D) cortical map of the number of participants with
confidence above threshold at each parcel. Sensorimotor, frontal, and lateral temporal regions
have the highest coverage. (E) cortical map of the average age of participants with confidence
above threshold at each parcel. (F) age distribution of participants with confidence above threshold
at each parcel. Average age per parcel (red line) is relatively stable while age distribution varies
from parcel to parcel (each subject is a black dot). (G) Average neuronal timescale when further
aggregating the 180 Glasser parcels into 21 macro-regions (mean±s.e.m across parcels within the
macro-region).
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Figure 2 - Supplement 1. MNI-iEEG Coverage

parcel confidenceA parcel max confidenceB coverage by ageC

parcel coverage mapD parcel-average age mapE

age distribution per parcelF

G Glasser macro-parcels sorted by timescale
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Figure 2 - Supplement 2. SA-preserving nulls
null distribution of timescale-T1w/T2w correlationA

Moran Spectral 
Randomization (MSR)

spatial  
variogram-fitting (VF) spin permutation

B spatial variogram
MSR VF

C empirical-null 
map correlation

p < 0.001 p = 0.011 p = 0.006

distance

D cortical thicknessFigure 3.6: Figure 3.2—figure supplement 2. Comparison of spatial autocorrelation-preserving
null map generation methods. (A) distributions of Spearman correlation values between empirical
T1w/T2w map and 1000 spatial-autocorrelation preserving null timescale maps generated using
Moran Spectral Randomization (MSR), spatial variogram fitting (VF), and spin permutation.
Red dashed line denotes correlation between empirical timescale and T1w/T2w maps, p-values
indicate two-tailed significance, i.e., proportion of distribution with values more extreme than
empirical correlation. (B) spatial variogram for empirical timescale map (black) and 10 null maps
(blue) generated using MSR (left) and VF (right). Inset shows distribution of distances between
pairs of HCP-MMP parcels. (C) distribution of Spearman correlations between empirical and
1000 null timescale maps generated using MSR (green) and VF (red), showing similar levels of
correlation between empirical and null maps for both methods.
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Figure 2 - Supplement 3. Cortical thickness

cortical thickness vs. timescale and T1w/T2w

Figure 3.7: Figure 3.2—figure supplement 3. Cortical thickness. Cortical thickness from the
HCP dataset is positively correlated with neuronal timescale (left), and negatively correlated
with T1w/T2w, i.e., thicker brain regions have longer (slower) timescales and less grey matter
myelination, corresponding to higher-order association areas.

Figure 2 - Supplement 4. Macaque coverage maps

macaque ECoG electrode locationsA
ChibiGeorge

B
MT LIP LPFC OFC ACC S1 S2

George 4, 13, 22 10, 11, 20, 21 15, 24, 25, 26 45, 66 52, 57, 58, 59 18, 19, 30 1, 2, 9, 108

Chibi 3, 4, 109 10, 11 15, 25, 25, 26 23, 34, 45 52, 57, 58, 59 9, 19 95, 108

indices of ECoG electrodes (1-based indexing)

Figure 3.8: Figure 3.2—figure supplement 4. Macaque ECoG and single-unit coverage. (A)
locations of 180-electrode ECoG grid from 2 animals in the Neurotycho dataset, colors correspond
to locations used for comparison with single-unit timescales. (B) electrode indices of the sampled
areas from the two animals, corresponding to those colored in (A).
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Figure 3 - Supplement 1. Gene PCA
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Figure 3.9: Figure 3.3—figure supplement 1. Transcriptomic PCA results. (A) proportion of
variance explained by the top 10 principal components (PCs) of brain-specific genes (top) and
all AHBA genes (bottom). (B) absolute Spearman correlation between timescale map and top
10 PCs from brain-specific or full gene dataset. Asterisks indicate resampled significance while
accounting for spatial autocorrelation, **** indicate p < 0.001. Top PCs explain similar amounts
of variance, while only PC1 in both cases is significantly correlated with timescale.

Figure 3 - Supplement 2. Individual gene correlations
NMDA synapse GABAA synapse sodium channel potassium channel inhibitory markers single-cell timescale

Figure 3.10: Figure 3.3—figure supplement 2. Individual timescale-gene correlations magnitudes.
Correlation between timescale and expression of genes from Figure. 3.3C, with gene symbols
labeled and grouped into functional families for ease of interpretation.
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Figure 4 - Supplement 1. Spectral correlates of WM
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Figure 3.11: Figure 3.4—figure supplement 1. Spectral correlates of working memory perfor-
mance. (A) difference between delay and baseline periods for 1/f-exponent, timescale (same
as main Figure. 3.4C but absolute units on y-axis, instead of percentage), theta power, and
high-frequency power. (B) Spearman correlation between spectral feature difference and working
memory accuracy across participants, same features as in (A). * p < 0.05, ** p < 0.01, *** p <
0.005 in (A, B). (C) scatter plot of other significantly correlated spectral features from (B).
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Figure 4 - Supplement 2. Threshold cutoff for aging

coverage dependenceA min. parcel thresholdB C min. subject threshold

Figure 3.12: Figure 3.4—figure supplement 2. Parameter sensitivity for timescale-aging analysis.
(A) cortex-averaged timescale is independent of parcel coverage across participants. (B) sensitivity
analysis for the number of valid parcels a participant must have in order to be included in analysis
for main Figure 3.4E (red). As threshold increases (more stringent), fewer participants satisfy the
criteria (right) but correlation between participant age and timescale remains robust (left). (C)
sensitivity analysis for the number of valid participants a parcel must have in order to be included
in analysis for main Figure 3.4F. As threshold increases (more stringent), fewer parcels satisfy
the criteria (right) but average correlation across all parcels remains robust (left, error bars denote
s.e.m of distribution as in Figure 3.4F).
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Table 3.3: Supplementary File 1. Significant items from brain-specific GOEA. gene assoc.: direction
of association with timescale; "all" includes both positive and negative. e/p: enriched or purified; ont.:
ontology: BP: biological process; CC: cellular components; MF: molecular function

gene
as-
soc.

ID e/p ont. name enrich.
ratio

p-value
(FDR-
adjusted)

all GO:0034702 e CC ion channel complex 1.959 0.008
all GO:1902495 e CC transmembrane transporter complex 1.91 0.008
all GO:1990351 e CC transporter complex 1.91 0.008
all GO:0098982 e CC GABA-ergic synapse 2.497 0.038
all GO:1902711 e CC GABA-A receptor complex 4.541 0.038
all GO:0034707 e CC chloride channel complex 3.385 0.038
pos GO:0008195 e MF phosphatidate phosphatase activity 13.864 0.007
neg GO:0098660 e BP inorganic ion transmembrane transport 2.515 0.002
neg GO:0098662 e BP inorganic cation transmembrane trans-

port
2.529 0.007

neg GO:0098655 e BP cation transmembrane transport 2.439 0.007
neg GO:0034220 e BP ion transmembrane transport 2.057 0.03
neg GO:0030001 e BP metal ion transport 2.239 0.036
neg GO:0071805 e BP potassium ion transmembrane trans-

port
3.122 0.036

neg GO:0006813 e BP potassium ion transport 3.081 0.037
neg GO:1902495 e CC transmembrane transporter complex 2.334 0.009
neg GO:1990351 e CC transporter complex 2.334 0.009
neg GO:0034702 e CC ion channel complex 2.36 0.009
neg GO:0098796 e CC membrane protein complex 2.063 0.009
neg GO:0034703 e CC cation channel complex 2.379 0.03
neg GO:0005244 e MF voltage-gated ion channel activity 3.081 0.002
neg GO:0022832 e MF voltage-gated channel activity 3.081 0.002
neg GO:0046873 e MF metal ion transmembrane transporter

activity
2.453 0.002

neg GO:0022890 e MF inorganic cation transmembrane trans-
porter activity

2.24 0.005

neg GO:0005216 e MF ion channel activity 2.289 0.006
neg GO:0008324 e MF cation transmembrane transporter ac-

tivity
2.173 0.006

neg GO:0015318 e MF inorganic molecular entity transmem-
brane transporter activity

2.04 0.006

neg GO:0015077 e MF monovalent inorganic cation trans-
membrane transporter activity

2.535 0.006

neg GO:0015075 e MF ion transmembrane transporter activity 2.024 0.006
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. . . Table 3.3 continued.
gene
as-
soc.

ID e/p ont. name enrich.
ratio

p-value
(FDR-
adjusted)

neg GO:0015079 e MF potassium ion transmembrane trans-
porter activity

3.041 0.006

neg GO:0005215 e MF transporter activity 1.883 0.006
neg GO:0022857 e MF transmembrane transporter activity 1.906 0.006
neg GO:0022836 e MF gated channel activity 2.301 0.006
neg GO:0015267 e MF channel activity 2.191 0.006
neg GO:0022803 e MF passive transmembrane transporter ac-

tivity
2.191 0.006

neg GO:0005249 e MF voltage-gated potassium channel activ-
ity

3.658 0.006

neg GO:0005261 e MF cation channel activity 2.353 0.009
neg GO:0005267 e MF potassium channel activity 3.058 0.011
neg GO:0022843 e MF voltage-gated cation channel activity 2.744 0.022

137



Table 3.4: Supplementary File 2. Significant items from all-gene GOEA. gene assoc.: direction of
association with timescale; "all" includes both positive and negative. e/p: enriched or purified; ont.:
ontology: BP: biological process; CC: cellular components; MF: molecular function

gene
as-
soc.

ID e/p ont. name enrich.
ratio

p-value
(FDR-
adjusted)

all GO:0034702 e CC ion channel complex 1.83 0.008
all GO:1990351 e CC transporter complex 1.774 0.008
all GO:1902495 e CC transmembrane transporter complex 1.79 0.008
all GO:0034703 e CC cation channel complex 1.952 0.009
all GO:0098982 e CC GABA-ergic synapse 2.468 0.048
all GO:1902711 e CC GABA-A receptor complex 5.035 0.048
pos GO:0050866 e BP negative regulation of cell activation 3.596 0
pos GO:0002376 e BP immune system process 1.629 0
pos GO:0006955 e BP immune response 1.992 0
pos GO:0002695 e BP negative regulation of leukocyte acti-

vation
3.343 0.001

pos GO:0045087 e BP innate immune response 2.297 0.005
pos GO:0050865 e BP regulation of cell activation 2.099 0.005
pos GO:0045321 e BP leukocyte activation 1.834 0.006
pos GO:0007165 e BP signal transduction 1.301 0.006
pos GO:0051250 e BP negative regulation of lymphocyte ac-

tivation
3.305 0.007

pos GO:0070663 e BP regulation of leukocyte proliferation 2.82 0.007
pos GO:0002252 e BP immune effector process 1.778 0.009
pos GO:0050670 e BP regulation of lymphocyte proliferation 2.823 0.009
pos GO:0032944 e BP regulation of mononuclear cell prolif-

eration
2.807 0.009

pos GO:0050776 e BP regulation of immune response 1.787 0.011
pos GO:0002682 e BP regulation of immune system process 1.571 0.015
pos GO:0046634 e BP regulation of alpha-beta T cell activa-

tion
3.772 0.016

pos GO:0001775 e BP cell activation 1.709 0.016
pos GO:0032956 e BP regulation of actin cytoskeleton orga-

nization
2.229 0.016

pos GO:0003150 e BP muscular septum morphogenesis 17.672 0.016
pos GO:0032945 e BP negative regulation of mononuclear

cell proliferation
4.208 0.016

pos GO:0050672 e BP negative regulation of lymphocyte pro-
liferation

4.208 0.016

pos GO:0006952 e BP defense response 1.686 0.016
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. . . Table 3.4 continued.
gene
as-
soc.

ID e/p ont. name enrich.
ratio

p-value
(FDR-
adjusted)

pos GO:0002694 e BP regulation of leukocyte activation 2.013 0.016
pos GO:0002253 e BP activation of immune response 2.183 0.016
pos GO:0030833 e BP regulation of actin filament polymer-

ization
2.832 0.016

pos GO:0032970 e BP regulation of actin filament-based pro-
cess

2.136 0.017

pos GO:0002684 e BP positive regulation of immune system
process

1.708 0.017

pos GO:0046640 e BP regulation of alpha-beta T cell prolif-
eration

6.094 0.017

pos GO:0050868 e BP negative regulation of T cell activation 3.381 0.017
pos GO:0002274 e BP myeloid leukocyte activation 1.926 0.017
pos GO:0008064 e BP regulation of actin polymerization or

depolymerization
2.697 0.017

pos GO:0030832 e BP regulation of actin filament length 2.681 0.017
pos GO:0006334 e BP nucleosome assembly 3.053 0.018
pos GO:0070664 e BP negative regulation of leukocyte prolif-

eration
3.956 0.018

pos GO:0038096 e BP Fc-gamma receptor signaling pathway
involved in phagocytosis

3.787 0.026

pos GO:0002433 e BP immune response-regulating cell sur-
face receptor signaling pathway in-
volved in phagocytosis

3.787 0.026

pos GO:0098883 e BP synapse pruning 10.041 0.027
pos GO:0038094 e BP Fc-gamma receptor signaling pathway 3.734 0.029
pos GO:0051249 e BP regulation of lymphocyte activation 2.035 0.029
pos GO:0002431 e BP Fc receptor mediated stimulatory sig-

naling pathway
3.682 0.03

pos GO:0042116 e BP macrophage activation 4.734 0.03
pos GO:0110053 e BP regulation of actin filament organiza-

tion
2.279 0.03

pos GO:0150064 e BP vertebrate eye-specific patterning 22.09 0.03
pos GO:0002683 e BP negative regulation of immune system

process
2.008 0.03

pos GO:0051049 e BP regulation of transport 1.428 0.03
pos GO:0098542 e BP defense response to other organism 1.811 0.033
pos GO:0150146 e BP cell junction disassembly 9.204 0.033
pos GO:0016322 e BP neuron remodeling 9.204 0.033
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. . . Table 3.4 continued.
gene
as-
soc.

ID e/p ont. name enrich.
ratio

p-value
(FDR-
adjusted)

pos GO:1903038 e BP negative regulation of leukocyte cell-
cell adhesion

3.04 0.033

pos GO:0007166 e BP cell surface receptor signaling path-
way

1.391 0.034

pos GO:0034728 e BP nucleosome organization 2.591 0.037
pos GO:0036336 e BP dendritic cell migration 6.976 0.037
pos GO:0048584 e BP positive regulation of response to stim-

ulus
1.379 0.039

pos GO:0001774 e BP microglial cell activation 5.727 0.039
pos GO:0002269 e BP leukocyte activation involved in in-

flammatory response
5.727 0.039

pos GO:0050778 e BP positive regulation of immune re-
sponse

1.82 0.039

pos GO:2000112 p BP regulation of cellular macromolecule
biosynthetic process

0.718 0.017

pos GO:0051252 p BP regulation of RNA metabolic process 0.718 0.019
pos GO:0044271 p BP cellular nitrogen compound biosyn-

thetic process
0.554 0.029

pos GO:0019219 p BP regulation of nucleobase-containing
compound metabolic process

0.737 0.029

pos GO:0090304 p BP nucleic acid metabolic process 0.654 0.037
pos GO:0032993 e CC protein-DNA complex 2.829 0.016
pos GO:0000786 e CC nucleosome 3.488 0.016
pos GO:0005887 e CC integral component of plasma mem-

brane
1.555 0.016

pos GO:0031226 e CC intrinsic component of plasma mem-
brane

1.536 0.016

pos GO:0044815 e CC DNA packaging complex 3.217 0.023
pos GO:0030666 e CC endocytic vesicle membrane 2.705 0.034
pos GO:0031514 e CC motile cilium 2.897 0.034
pos GO:0043235 e CC receptor complex 1.981 0.04
pos GO:0000839 e CC Hrd1p ubiquitin ligase ERAD-L com-

plex
11.045 0.047

pos GO:0016021 e CC integral component of membrane 1.232 0.047
pos GO:0005634 p CC nucleus 0.79 0.04
pos GO:0003676 p MF nucleic acid binding 0.694 0.012
neg GO:0006813 e BP potassium ion transport 2.911 0.004
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. . . Table 3.4 continued.
gene
as-
soc.

ID e/p ont. name enrich.
ratio

p-value
(FDR-
adjusted)

neg GO:0071805 e BP potassium ion transmembrane trans-
port

2.868 0.008

neg GO:0015079 e MF potassium ion transmembrane trans-
porter activity

2.888 0.001

neg GO:0015075 e MF ion transmembrane transporter activity 1.726 0.001
neg GO:0022857 e MF transmembrane transporter activity 1.649 0.001
neg GO:0046873 e MF metal ion transmembrane transporter

activity
2.068 0.001

neg GO:0005215 e MF transporter activity 1.587 0.002
neg GO:0022832 e MF voltage-gated channel activity 2.468 0.006
neg GO:0005244 e MF voltage-gated ion channel activity 2.468 0.006
neg GO:0015318 e MF inorganic molecular entity transmem-

brane transporter activity
1.662 0.008

neg GO:0001227 e MF DNA-binding transcription repressor
activity, RNA polymerase II-specific

2.227 0.011

neg GO:0001217 e MF DNA-binding transcription repressor
activity

2.218 0.011

neg GO:0022836 e MF gated channel activity 2.007 0.015
neg GO:0005249 e MF voltage-gated potassium channel activ-

ity
3.126 0.015

neg GO:0015077 e MF monovalent inorganic cation trans-
membrane transporter activity

1.916 0.022

neg GO:0005267 e MF potassium channel activity 2.703 0.022
neg GO:0022890 e MF inorganic cation transmembrane trans-

porter activity
1.701 0.033
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Table 3.5: Supplementary File 3. Significant items from all-gene GOEA with T1w/T2w as control.
gene assoc.: direction of association with timescale; "all" includes both positive and negative. e/p: enriched
or purified; ont.: ontology: BP: biological process; CC: cellular components; MF: molecular function

gene
as-
soc.

ID e/p ont. name enrich.
ratio

p-value
(FDR-
adjusted)

all GO:1990351 e CC transporter complex 1.564 0.038
all GO:1902495 e CC transmembrane transporter complex 1.563 0.038
all GO:0034702 e CC ion channel complex 1.572 0.043
all GO:1990904 p CC ribonucleoprotein complex 0.641 0.038
pos GO:0006955 e BP immune response 1.647 0.001
pos GO:0045087 e BP innate immune response 1.963 0.001
pos GO:0002274 e BP myeloid leukocyte activation 1.789 0.001
pos GO:0002376 e BP immune system process 1.383 0.001
pos GO:0002684 e BP positive regulation of immune system

process
1.607 0.001

pos GO:0050865 e BP regulation of cell activation 1.778 0.002
pos GO:0045321 e BP leukocyte activation 1.602 0.002
pos GO:0042116 e BP macrophage activation 4.158 0.002
pos GO:0050776 e BP regulation of immune response 1.605 0.002
pos GO:0002694 e BP regulation of leukocyte activation 1.802 0.002
pos GO:0050670 e BP regulation of lymphocyte proliferation 2.287 0.004
pos GO:0002682 e BP regulation of immune system process 1.427 0.005
pos GO:0070663 e BP regulation of leukocyte proliferation 2.256 0.005
pos GO:0002253 e BP activation of immune response 1.905 0.005
pos GO:0032944 e BP regulation of mononuclear cell prolif-

eration
2.274 0.006

pos GO:0150146 e BP cell junction disassembly 7.277 0.006
pos GO:0050778 e BP positive regulation of immune re-

sponse
1.697 0.006

pos GO:0006898 e BP receptor-mediated endocytosis 2.296 0.007
pos GO:0030833 e BP regulation of actin filament polymer-

ization
2.319 0.008

pos GO:0001775 e BP cell activation 1.504 0.008
pos GO:0051249 e BP regulation of lymphocyte activation 1.806 0.009
pos GO:0034314 e BP Arp2/3 complex-mediated actin nucle-

ation
5.871 0.009

pos GO:0002252 e BP immune effector process 1.521 0.009
pos GO:0050866 e BP negative regulation of cell activation 2.248 0.009
pos GO:0001774 e BP microglial cell activation 4.62 0.009
pos GO:0045010 e BP actin nucleation 4.62 0.009
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. . . Table 3.5 continued.
gene
as-
soc.

ID e/p ont. name enrich.
ratio

p-value
(FDR-
adjusted)

pos GO:0002269 e BP leukocyte activation involved in in-
flammatory response

4.62 0.009

pos GO:0032940 e BP secretion by cell 1.49 0.011
pos GO:0045055 e BP regulated exocytosis 1.598 0.012
pos GO:0140352 e BP export from cell 1.475 0.012
pos GO:0002697 e BP regulation of immune effector process 1.787 0.019
pos GO:0032103 e BP positive regulation of response to ex-

ternal stimulus
1.702 0.02

pos GO:0002366 e BP leukocyte activation involved in im-
mune response

1.621 0.02

pos GO:0006887 e BP exocytosis 1.539 0.021
pos GO:0098754 e BP detoxification 2.45 0.021
pos GO:0051046 e BP regulation of secretion 1.505 0.024
pos GO:0050863 e BP regulation of T cell activation 1.865 0.025
pos GO:0098883 e BP synapse pruning 6.805 0.025
pos GO:1903530 e BP regulation of secretion by cell 1.521 0.025
pos GO:0002263 e BP cell activation involved in immune re-

sponse
1.609 0.026

pos GO:0048584 e BP positive regulation of response to stim-
ulus

1.284 0.027

pos GO:0043299 e BP leukocyte degranulation 1.656 0.027
pos GO:0038096 e BP Fc-gamma receptor signaling pathway

involved in phagocytosis
2.851 0.027

pos GO:0002433 e BP immune response-regulating cell sur-
face receptor signaling pathway in-
volved in phagocytosis

2.851 0.027

pos GO:0002695 e BP negative regulation of leukocyte acti-
vation

2.216 0.029

pos GO:0016192 e BP vesicle-mediated transport 1.33 0.03
pos GO:0002275 e BP myeloid cell activation involved in im-

mune response
1.64 0.03

pos GO:0038094 e BP Fc-gamma receptor signaling pathway 2.811 0.03
pos GO:0002696 e BP positive regulation of leukocyte activa-

tion
1.84 0.031

pos GO:0032722 e BP positive regulation of chemokine pro-
duction

3.18 0.033

pos GO:0002431 e BP Fc receptor mediated stimulatory sig-
naling pathway

2.772 0.033
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. . . Table 3.5 continued.
gene
as-
soc.

ID e/p ont. name enrich.
ratio

p-value
(FDR-
adjusted)

pos GO:0009607 e BP response to biotic stimulus 1.432 0.033
pos GO:0043207 e BP response to external biotic stimulus 1.435 0.035
pos GO:0016322 e BP neuron remodeling 6.238 0.035
pos GO:0008064 e BP regulation of actin polymerization or

depolymerization
2.103 0.037

pos GO:0030832 e BP regulation of actin filament length 2.091 0.038
pos GO:1903037 e BP regulation of leukocyte cell-cell adhe-

sion
1.821 0.04

pos GO:0032930 e BP positive regulation of superoxide anion
generation

5.137 0.041

pos GO:0042129 e BP regulation of T cell proliferation 2.202 0.042
pos GO:0055069 e BP zinc ion homeostasis 4.01 0.045
pos GO:0042534 e BP regulation of tumor necrosis factor

biosynthetic process
4.01 0.045

pos GO:0061900 e BP glial cell activation 3.669 0.046
pos GO:0002283 e BP neutrophil activation involved in im-

mune response
1.627 0.046

pos GO:0042119 e BP neutrophil activation 1.626 0.049
pos GO:0051252 p BP regulation of RNA metabolic process 0.704 0
pos GO:2000112 p BP regulation of cellular macromolecule

biosynthetic process
0.711 0

pos GO:2001141 p BP regulation of RNA biosynthetic pro-
cess

0.704 0

pos GO:0019219 p BP regulation of nucleobase-containing
compound metabolic process

0.729 0

pos GO:1903506 p BP regulation of nucleic acid-templated
transcription

0.705 0

pos GO:0010556 p BP regulation of macromolecule biosyn-
thetic process

0.733 0

pos GO:0006355 p BP regulation of transcription, DNA-
templated

0.713 0

pos GO:0010468 p BP regulation of gene expression 0.77 0
pos GO:0031326 p BP regulation of cellular biosynthetic pro-

cess
0.757 0.001

pos GO:0080090 p BP regulation of primary metabolic pro-
cess

0.812 0.001

pos GO:0009889 p BP regulation of biosynthetic process 0.769 0.001
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. . . Table 3.5 continued.
gene
as-
soc.

ID e/p ont. name enrich.
ratio

p-value
(FDR-
adjusted)

pos GO:0060255 p BP regulation of macromolecule
metabolic process

0.829 0.002

pos GO:0051171 p BP regulation of nitrogen compound
metabolic process

0.819 0.002

pos GO:0019222 p BP regulation of metabolic process 0.846 0.005
pos GO:0031323 p BP regulation of cellular metabolic pro-

cess
0.837 0.006

pos GO:0090304 p BP nucleic acid metabolic process 0.739 0.029
pos GO:0005887 e CC integral component of plasma mem-

brane
1.417 0.016

pos GO:0031226 e CC intrinsic component of plasma mem-
brane

1.396 0.016

pos GO:0005885 e CC Arp2/3 protein complex 7.485 0.017
pos GO:0030666 e CC endocytic vesicle membrane 2.291 0.017
pos GO:0070062 e CC extracellular exosome 1.285 0.042
pos GO:1903561 e CC extracellular vesicle 1.279 0.042
pos GO:0043230 e CC extracellular organelle 1.278 0.042
pos GO:0016021 e CC integral component of membrane 1.173 0.042
pos GO:0031224 e CC intrinsic component of membrane 1.165 0.043
pos GO:0098797 e CC plasma membrane protein complex 1.559 0.043
pos GO:0005634 p CC nucleus 0.803 0.004
pos GO:0043229 p CC intracellular organelle 0.905 0.042
pos GO:0043231 p CC intracellular membrane-bounded or-

ganelle
0.891 0.043

pos GO:0000785 p CC chromatin 0.633 0.043
pos GO:0003676 p MF nucleic acid binding 0.69 0
pos GO:0097159 p MF organic cyclic compound binding 0.78 0
pos GO:1901363 p MF heterocyclic compound binding 0.779 0
pos GO:0003677 p MF DNA binding 0.687 0.001
pos GO:0140110 p MF transcription regulator activity 0.636 0.004
pos GO:0003700 p MF DNA-binding transcription factor ac-

tivity
0.592 0.008

neg GO:0034220 e BP ion transmembrane transport 1.619 0.013
neg GO:0006820 e BP anion transport 1.785 0.013
neg GO:0006811 e BP ion transport 1.486 0.013
neg GO:0055085 e BP transmembrane transport 1.486 0.015
neg GO:0098660 e BP inorganic ion transmembrane transport 1.674 0.035
neg GO:0098656 e BP anion transmembrane transport 2.067 0.04
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. . . Table 3.5 continued.
gene
as-
soc.

ID e/p ont. name enrich.
ratio

p-value
(FDR-
adjusted)

neg GO:0006813 e BP potassium ion transport 2.359 0.046
neg GO:0015075 e MF ion transmembrane transporter activity 1.702 0
neg GO:0005215 e MF transporter activity 1.58 0
neg GO:0022857 e MF transmembrane transporter activity 1.615 0
neg GO:0046873 e MF metal ion transmembrane transporter

activity
1.978 0

neg GO:0015318 e MF inorganic molecular entity transmem-
brane transporter activity

1.67 0.001

neg GO:0008509 e MF anion transmembrane transporter ac-
tivity

1.983 0.007

neg GO:0015079 e MF potassium ion transmembrane trans-
porter activity

2.341 0.031

neg GO:0022890 e MF inorganic cation transmembrane trans-
porter activity

1.625 0.045

neg GO:0008514 e MF organic anion transmembrane trans-
porter activity

2.111 0.045
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Chapter 4

Conclusion

This dissertation combines computational frameworks for simulating brain signals and

analysis of data across species and modalities to decipher large-scale brain dynamics, specifically

rhythmic and asynchronous (or aperiodic) neural activity recorded in ECoG and LFP, in terms

of their underlying spiking, synaptic, and other physiological contributions. By doing so, these

signal modalities, which are routinely mined for neural correlates of cognition, can then be

used to infer low-level and otherwise inaccessible biological variables to enable a mechanistic

investigation of human cognition. As I have already built the case for in the introduction, animal

cognition can often be used as a stand-in for shared subsets or prerequisites of the computations

involved in human cognition, but not as a replacement. Therefore, it would be extremely beneficial

for human cognitive and clinical neuroscience to link complex cognitive functions, as well as

neurological and psychiatric disorders, to their underlying biological mechanisms, and this

dissertation represents a preliminary effort towards that goal. I will conclude here by voicing

a limitation of the data-driven approach shared by the included works, as well as how more

sophisticated simulation and analysis frameworks can address the aforementioned limitation.

By and large, science is in the business of finding insightful co-variations between often

high-dimensional measurements—which includes finding meaningful measurements in the first
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place—and explaining those covariations with simpler descriptions of the underlying latent

processes. The first establishes correlation, the latter converges on mechanism. When considering

data across scales or modalities, such as the cortex-wide variation of gene expression and neuronal

timescale presented in Chapter 3, a common criticism is that “it’s only a correlation”. This is a

valid criticism since, strictly speaking, the analyses presented only support the conclusion that

there is a (linear) correlation between, for example, potassium ion channel gene expression and

neuronal timescale. The data does not prove a definitive and causal relationship between the

amount of potassium channels and the intrinsic timescale of a brain region, nor does it elucidate

how exactly the former shapes the latter, though the implication is that more functional potassium

ion channels in the cell membrane shortens the time constants of the corresponding ionic currents.

The same can be said for the suggestive relationship between cellular variables and network

dynamics in the organoids throughout their maturation, presented in Chapter 1. As such, although

the present data-driven analysis framework is valuable for identifying potential relationships

between cellular variables and large-scale dynamics in the human brain, it does not dissect

the step-by-step process behind their interaction, which requires further detailed perturbation

experiments to introduce controlled variations.

However, nevermind the fact that such perturbation experiments cannot be performed in

the human brain, even if one was to perform these experiments in-vitro or in animal models, the

sheer number of variables concerned and the nonlinearity of their interactions in such a complex

system renders these efforts all but futile. This is because perturbation experiments typically

hinge on the assumption of “all else being equal”, meaning that we can identify the mechanistic

contribution of one variable at a time while all other relevant variables can be controlled and held

constant. But this is rarely a safe assumption in the biological brain full of natural variations

and feedback interactions across scales, and the problem is further exacerbated by the brain’s

total disregard of the linearity principle. Thus, it’s difficult to say a priori which (combinations

of) relationships will linearly generalize and within what range of values, so it would require an

157



incredibly large sample size and the ability to simultaneously measure all variables of interest in

order to have some confidence in the relationships we discover.

Is the search for mechanistic principles for how biology gives rise to human cognition

hopeless then? I don’t believe so. Instead of performing controlled in-vivo experiments in

thousands or millions of mice, we can perform these experiments in-silico using computational

models of neural circuits, in which one can hold any and all variables constant. The model

presented in Chapter 2 is a simple example of this: artificial manipulation of synaptic excitation

or inhibition while holding the other constant is difficult to do in-vivo, but can be easily achieved

to measure the hypothetical effect on the exponent of simulated power spectra in the model. As

stated in the Discussion section of Chapter 2, this model is clearly limited in that it ignores many

other variables that are important for the frequency characteristics of field potentials, such as

recurrent interactions between populations and other types of synaptic currents. However, the

idea remains. Moving forward, I believe that we need to build more sophisticated mechanistic

models of neural circuits that are consistent with the underlying biology, reproduce the observed

brain dynamics, and perform the hypothesized computations—ideally, through an automated

framework. Within this framework, analysis of real brain data serves a different purpose: instead

of looking for descriptive features that correlate with or differentiate between cognitive and

disease states, brain data is used to constrain the space of possible mechanistic models, forming a

cyclic process of model design (synthesis) and discovery (analysis). In the context of large-scale

simulations, this process is called data assimilation or simulation-based inference, which is now

routinely applied in fields employing high-dimensional model systems, such as weather prediction.

Inversion (or inference) of such models with large parameter spaces—as would be the case for

models of neural circuits—presents significant technical difficulties, but I believe that it would

ultimately prove to be a productive path forward, thereby combining computational modeling

with analysis of “big data” in neuroscience to link neurobiology and human cognition.
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