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Abstract 

Oscillatory brain activity observed in neural field 
potentials has been widely used to index behavior, 
cognition, and disease. There is emerging evidence, 
however, that oscillations can exist in different modes, 
such as sustained versus bursting, that have different 
physiological origins and different behavioral relevance. 
Additionally, there exist other, non-oscillatory 
components in the field potential that can obscure or be 
mistaken for oscillations, especially in the mean power 
spectral density (PSD). One such component is the 
aperiodic signal that gives rise to the 1/f power law 
background in the field potential PSD, which has been 
proposed to reflect synaptic potentials induced by 
Poisson population spiking. It remains an ongoing 
challenge to consistently define, operationalize, and 
isolate oscillatory and non-oscillatory neural dynamics. 
In this work, we begin with a model of the field potential 
as a superposition of the aperiodic (Poisson) component 
and oscillatory components. We use two measures – 
spectral coefficient of variation (SCV) and deviation 
from noise power distribution – that are able to separate 
these components in simulation. Finally, we demonstrate 
the existence and separation of these components in a 
range of experimental data, focusing on human 
electrocorticography during movement in this paper. 
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Background 

One of the key observations in systems neuroscience is that 
cortical neurons in spontaneous and in-vivo conditions often 
fire action potentials in a seemingly stochastic manner, where 
the distribution of interspike interval (ISI) approaches an 
exponential distribution, similar to events drawn from a 
Poisson point process (e.g., (Softky & Koch, 1993), but see 
(Maimon & Assad, 2009) for observed exceptions). 
Extrapolated to an entire population, this dynamical regime 
has been coined the asynchronous irregular state (Brunel, 
2000). When recurrently connected, and balanced between 
excitation and inhibition (E-I), the asynchronous population 

activity in turn generates a baseline stochastic perturbation 
(neuronal noise) in an individual cell’s membrane voltage. 
This seemingly circular but self-consistent mechanism 
enables the single cell to emit action potentials in a Poisson-
like fashion, which has also been argued to be advantageous 
for circuit computation (e.g., van Vreeswijk & Sompolinsky, 
1996, and Zerlaut & Destexhe, 2017 for recent review). 
Based on this line of work, there has been a symbiotic 
convergence of systems and computational neuroscience: the 
E-I balanced network provides a robust and rich dynamical 
system theorized to underlie a wide range of brain functions. 
This class of neuronal dynamics, however, has not been 
studied in detail in human cognitive neuroscience until very 
recently, likely due to the lack of access to single and multi-
unit recordings in humans. 

In addition to the asynchronous state, individual neurons 
and neural populations also exhibit synchronous, oscillatory 
dynamics. These electrophysiological features can be very 
strong, dominating the signal and making them easy to record 
and measure.  The asynchronous and synchronous states can 
coexist simultaneously in different neural populations, and 
underlie two ends of a spectrum: previously, asynchronous 
population activity has been related to desynchronization (of 
alpha and beta oscillations) in the EEG, though this 
characterization lacks detail. Furthermore, the 
“desynchronized state” is sometimes held to be synonymous 
with low-amplitude, high-frequency oscillations - in 
particular, the 40 Hz gamma oscillation - which is erroneous 
as gamma oscillation is an entirely different network state 
reflecting local synchrony (Ahmed & Cash, 2013).  

More recently, observations from simultaneous single unit 
and field potential recordings (local field potential, LFP, and 
electrocorticography, ECoG) revealed that single unit firing 
rate is correlated with high-frequency (high-gamma) and 
broadband power of field potential in nearby regions, where 
the canonical 1/f power spectral density (PSD) shifts up or 
down, either in frequencies above 100 Hz (Mukamel et al., 
2005), or in a broadband manner (Manning, Jacobs, Fried, & 
Kahana, 2009). These observations are modeled as additive 
or multiplicative gains in the firing rate of a Poisson 
population, and can be dissected with more sophisticated 
analytical tools, such as PCA decomposition of the 
spectrogram (Miller, Zanos, Fetz, Nijs, & Ojemann, 2009) or 



parameterization of the PSD (Haller et al., 2018). Based on 
the Poisson population model, high-gamma and broadband 
power have been used in recent ECoG studies to infer firing 
rate changes, as well as other variables like “neural noise” in 
aging and E-I balance (Gao, Peterson, & Voytek, 2017; 
Voytek et al., 2015). These interpretations are not yet well 
supported, however, for two reasons. First, the synaptic-
filtered heterogeneous-rate Poisson population model was 
only shown to capture the shape of the 1/f PSD and changes 
in mean power, but not any other higher-order statistics. 
Second, other brain dynamics, such as oscillations, neuronal 
avalanches, or ERPs, often contribute significantly to 
the signal power and, as a result, decoupling these processes 
from asynchronous population dynamics using the mean 
power spectral density alone remains a contemporary 
challenge (though various existing tools have seen success at 
doing so see Haller et al., 2018; Wen & Liu, 2016). For 
instance, in the high-frequency range (~100 Hz), there is 
ongoing debate about whether neuronal excitation manifests 
as an increase in wideband oscillations or asynchronous noise 
signal, or both (Hermes, Miller, Wandell, & Winawer, 2015). 

In this work, we begin by modeling the baseline (“noise”) 
field potential as synaptic potentials induced by stationary 
and homogeneous Poisson population firing. We derive 
analytically, and demonstrate with simulation, that while 
mean spectral power decreases with increasing frequency (1/f 
power law), power at any single frequency follows an 
exponential distribution (across time) parameterized by the 
mean power, such that the standard deviation is equal to the 
mean. We leverage two metrics to identify stationary 
stochastic dynamics, and deviations from it, in field 
potentials over time: 1) spectral coefficient of variation 
(SCV), and 2) Kolmogorov-Smirnov test statistic against the 
null exponential distribution (KS-stat). We show that both 
metrics are sensitive to simulated oscillatory signals added to 
the noise LFP. Finally, using a variety of publically available 
datasets (resting and task for rodent LFP, monkey ECoG and 
EEG, and human ECoG and EEG), we demonstrate:  

1. The existence of a “noise band” between 30-70 Hz that 
typically follows the null exponential distribution 
regardless of brain region, task, or species. 

2. The superposition of oscillatory and other types of 
frequency-dependent dynamics onto the baseline power 
distribution of the aperiodic signal in other frequencies 
(such as the 10-25 Hz beta range during movement). 

3. The ability to distinguish between bursting vs. sustained 
oscillations, as well as between narrowband vs. 
broadband processes, based on first principle derivation, 
rather than heuristically examining the average power 
spectrum. 

4. Evidence for rate-varying stochastic neural populations 
that activate in a task-dependent manner, resulting in a 
shift in mean power but maintaining a noise-like 
distribution. 

This work makes contributions towards model-driven 
analysis of neural field potentials, particularly oscillatory and 
high-gamma components, in addition to establishing 
theoretical advances in linking asynchronous population 
dynamics to meso- and macroscale field potential signals that 
are more widely accessible in cognitive neuroscience. Due to 
space constraint, the rest of the paper will present an 
overview of the method, as well as key findings from 
simulated and human ECoG data. All simulation and analysis 
code can be found at online: 
https://github.com/voytekresearch/spectralCV 

Methods 

Poisson Population & Oscillation Simulation 
We start with a generative model of the LFP as filtered 
Poisson population firing, i.e. white noise convolved with an 
exponentially rising and decaying synaptic response. This 
model of mesoscale field potential was previously used in 
(Miller et al., 2009), and is similar to a 1D random walk with 
memory (i.e. Ornstein Uhlenbeck process) previously used to 
model intracellular fluctuations during the high-conductance 
state (Destexhe, Rudolph, Fellous, & Sejnowski, 2001). Two 
kinds of oscillatory signals were added to the 2-minute long 
baseline noise LFP simulation: one stationary-amplitude and 
one bursting, with specified on-off transition probabilities.  

Windowed Fourier Analysis 
For both simulated and experimental data, signal 
spectrograms are computed using short time Fourier 
transforms (STFT) with non-overlapping or partially 
overlapping sliding windows such that sequential power 
estimates remain independent. In trialed analyses, the 
spectrogram is built by concatenating single-window FFTs 
computed from data immediately prior to (and after) trial 
onset. The sequence of spectral power at frequency f over the 
entirety of the signal forms the power distribution at f Hz, 
P(f). The mean of the distribution is, by definition, the power 
spectral density at frequency f as computed using Welch’s 
method. Mean power (1/λ) is used to parameterize the null 
exponential distribution, to which we compare the empirical 
distribution to using the Kolmogorov-Smirnov test (see 
results for derivation of null distribution). Additionally, we 
compute the spectral coefficient of variation (SCV, standard 
deviation over mean), which equals 1 for the exponential 
distribution. 

Results 

Derivation of Null Spectral Power Distribution 
When white noise is Fourier transformed, the Fourier 
coefficient at any frequency is a complex random variable 
drawn from a 2D normal distribution, with mean zero and 
variance proportional to the total signal power within the FFT 
window (Perceval’s theorem). The squared vector norm 
(spectral power) is then a sum of two independently 
distributed normal variables with equal variance, i.e., P 



follows the exponential distribution P(x) ~ λexp(-λx), where 
λ fully parameterizes the exponential distribution and 1/λ 
represents the mean power at that frequency. Convolving 
white noise with the synaptic response filter is equivalent to 
scaling λ at each frequency, but does not affect the shape of 
the distributions. This means that even though power varies 
as a function of frequency, following a power law decay, 
power for each frequency remains exponentially distributed, 
and thus the signature of aperiodic activity should in theory 
be identifiable at any frequency when not obscured by 
narrowband components with a higher amplitude, e.g., an 
oscillation. We refer to this filtered noise signal as baseline 
noise LFP. 

Simulation and Analysis of Poisson Population 
Field Potential with Oscillations 
In the simulation experiment, a stationary oscillation (4 Hz) 
and a bursting oscillation (23 Hz) were added to the baseline 
noise LFP. We performed the simulation 50 times (trials) for 
120 seconds each, and computed the PSD, SCV, and KS test 
p-value (Figure 1., each trace is a trial; example time series 
in Fig. 1a). We observe two oscillatory bumps above the 1/f 
power law background from the aperiodic component in the 
PSD (Fig.1b), though the background spectrum partially 
obscures the bandwidth and amplitude of the oscillations.  

 

Figure 1: Analysis of simulated noise LFP with stationary 
and bursting oscillations. a) Example simulated LFP 
overlaid with stationary (blue) and bursting (orange) 
oscillation. b-d) power, power variation, and noise deviation 
separating aperiodic and oscillatory components in the signal. 
e) power distribution across time at 4, 25, and 50Hz showing 
deviation and conformity to the null exponential distribution. 

Both the SCV and KS tests, however, show clearer 
discrimination between non-oscillatory and oscillatory 
regions in the spectrum. In Fig.1c, SCV is ~1.0 everywhere 

except at the oscillatory frequencies, consistent with the 
above derivations. SCV at 4 Hz is < 1.0 in all trials, since a 
stationary (ongoing) oscillation has little variation in power 
compared to its mean. In contrast, the bursting oscillation 
(20-27 Hz), which has high variability in power compared to 
the mean, effectively has a bimodal power distribution, 
toggling between the aperiodic and oscillatory state, thus 
pushing SCV to > 1.0. KS test p-values show that the 
empirical power distributions are not significantly different 
(at pthresh=0.01) from the null (exponential) distributions 
except at frequencies where oscillations exist (Fig.1c).  

Looking at power distributions from a single trial (Fig.1e), 
we observe that the stationary oscillation at 4 Hz (left) results 
in a more symmetrical distribution due to its well-defined 
oscillatory nature, while the bursting oscillation at 25 Hz 
(middle) elongates the right-tail, representing time periods 
where bursting is present (p-values in title denote KS test 
against exponential null). Power distribution at 50 Hz follows 
the predicted null closely. These results demonstrate the 
utility of higher-order moments in differentiating stationary 
and bursting oscillatory dynamics from the stochastic 
Poisson population dynamics, as well as from each other. 

Movement-Dependent Activation of Oscillatory 
Beta and Stochastic High-Gamma 
We analyze previously published human ECoG data, where 
patients undergoing epilepsy monitoring participate in a 
finger-flexion task (Miller et al., 2009). Between periods of 
resting, cues are presented to the participants to repeatedly 
move a single digit, and accelerometer data is captured as 
well. In addition to continuous sliding-window analysis over 
the entire recording (“whole” condition), trialed analysis was 
performed by applying windowed FFT to 1-second of data 
immediately preceding and following onset of movement, 
and trial-concatenated to form the “pre” or “move” condition, 
respectively. Figure 2 presents data from M1 electrode of one 
subject (148 completed trials). Comparing mean PSDs of pre 
and move states (Fig. 2a), we see previously reported 
movement-related decrease in oscillatory beta (or mu, 10-20 
Hz) power and increase in high gamma (70-100 Hz) power. 
However, SCV and KS test reveal two novel observations. 

First, during both pre and move conditions, high gamma 
frequencies have SCV close to 1 and are not significantly 
different from the null distribution, while whole-recording 
analysis shows a significant deviation from the null (Fig. 
2b,c). This suggests that high gamma frequencies in M1 for 
this experiment reflects Poisson-like populations that 
increase in rate during task-demand, but remain stochastic in 
nature during both conditions. This is confirmed in Fig. 2d, 
where power around 80 Hz for pre and move conditions 
closely follow the fitted exponential distributions, but differ 
in mean power.  Second, while there is a prominent burst-like 
beta/mu oscillation during pre-movement periods, the 
oscillation disappears during movement, as shown by the flat 
SCV and KS p-value plots for movement period. This is not 
simply a decrease in power of a sustained oscillation, but 
rather the halting of an oscillatory process that is usually over 



and above the background asynchronous population 
dynamics during rest, i.e. a bursting oscillator.  

As a final measure, Fig. 2e plots pre vs. move power of 
every trial in 3 different frequency bands. While there is a 
clear shift in beta and high-gamma power (in opposite 
directions), reflecting an overall decrease and increase 
respectively, pre and move period power for a single trial are 
largely independent. Taken altogether, these observations 
support the interpretation that high-gamma power is in 
effective randomly drawn from two exponential distributions 
parameterized with different means, representative of an 
increase in Poisson population firing rate. Similarly, when the 
typically high-amplitude oscillatory process at beta 
frequency is removed, it exposes the underlying signature of 
a baseline stochastic population dynamics – but at a much 
lower frequency. Thus, we argue that the stochastic Poisson 
population dynamics should be reflected in the broadband 
field potential recording, though only in the absence of 
stronger and structured (narrowband) dynamics. 

 

Figure 2: Spectral representation of human ECoG during 
motor task. a-c) power, power variation, and noise deviation 
separating aperiodic and oscillatory components in the signal. 
Beta oscillation and high-gamma signal is highlighted in red 
and green, respectively. In particular, note the flat SCV and 
noise deviation in the orange trace in b-c). d) Power 
distribution at 80Hz for pre-movement, movement, and 
whole-recording analysis. e) Pre-movement and movement 
power in a trial in beta, “noise”, and high gamma frequencies 
are independent. 
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